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Abstract. The Poisson distribution plays a central role in modeling
event-driven processes across domains such as network traffic analysis, re-
liability engineering, and queueing systems. Accordingly, sampling from
the Poisson distribution is a core subroutine in many randomized al-
gorithms, with implementations expecting standard numerical libraries
such as NumPy to faithfully implement Poisson distributions.

However, these standard libraries often rely on heuristic approximations
that trade exactness for performance. Despite their widespread use, there
has been limited rigorous analysis of how these approximations may af-
fect the quality of generated samples.

The primary contribution of this work is a rigorous theoretical analy-
sis of the statistical distance between the ideal Poisson distribution and
the Poisson distribution implemented via Inverse Transformed Rejection
Sampling in standard numerical libraries such as NumPy. Our analysis
reveals significant parameter-dependent inexactness that can substan-
tially impact downstream outcomes. We establish an upper bound on
statistical distance, in particular, our bound is of the form bound of
O(¢ + Xe), where ¢ represents intrinsic error from factorial approxima-
tions and e captures the effect of finite-precision arithmetic, with A be-
ing the Poisson distribution parameter. We demonstrate through a case
study as how these bounds can be combined with theoretical analysis
(modulo assumption to access to ideal Poisson distributions) of the im-
plemented algorithms; thereby, providing confidence to the end user for
correctness of their implemented randomized algorithms.
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1 Introduction

Randomized algorithms form the backbone of modern computing, underpin-
ning everything from fundamental data structures like hash tables and skip
lists to sophisticated applications in cryptography [31,5], Monte Carlo simu-
lations [39,3,26], and machine learning. The theoretical guarantees of these al-
gorithms—whether correctness proofs for randomized quicksort [13], security
proofs for cryptographic protocols [11], or convergence bounds for Monte Carlo
methods—fundamentally depend on a crucial assumption: access to high-quality



samples from mathematically precise probability distributions. In practice, these
algorithms rely heavily on standard library sampling APIs such as NumPy’s
random module, GSL’s random number generators, and similar interfaces across
programming languages and scientific computing platforms.

Given the critical importance of samplers in ensuring the reliability of ran-
domized algorithms, one would naturally expect these standard library subrou-
tines to faithfully sample from the intended ideal distributions. Surprisingly,
Sarkar, Chakraborty, and Meel [34] showed that such is not the case even for
fundamental samplers like binomial samplers. Their analysis demonstrated that
widely-used library implementations introduce measurable deviations from the
ideal binomial distribution due to finite-precision arithmetic and approximation
techniques employed for computational efficiency. To quantify these deviations,
Sarkar et al. introduced the framework of statistical distance analysis for sam-
plers. The statistical distance A(p,q) = 1>, .0 [p(k) — q(k)| between distribu-
tions p and g offers a compelling interpretation: if two distributions are within &
in statistical distance, then any downstream algorithm using one in place of the
other will behave identically with probability at least 1 —¢. Furthermore, Sarkar
et al. [34] provided the first known formal bounds on the distance between imple-
mented binomial sampler in NumPy and ideal binomial distribution. Recognizing
the broader implications of their findings, Sarkar et al. identified the analysis of
other fundamental distributions in standard libraries as a major direction for
future research.

Our work addresses this call by analyzing the statistical distance between
ideal Poisson distribution and the Poisson distributions implemented in stan-
dard Numerical libraries—another cornerstone distribution in randomized algo-
rithms with widespread applications in queueing systems [32], reliability engi-
neering [19], network traffic modeling, and count-based algorithms [37]. However,
extending the analytical framework from binomial to Poisson distributions in-
troduces unique technical challenges. While binomial distributions have finite
support bounded by the parameter n, Poisson distributions possess unbounded
support over all non-negative integers. This fundamental difference necessitates
novel techniques for bounding the statistical distance, as the finite-support argu-
ments employed for binomial analysis no longer apply. Our approach overcomes
this challenge by leveraging the mathematical properties of the inverse transform
function used in Poisson samplers, enabling us to establish rigorous bounds de-
spite the unbounded domain.

Our main theoretical contribution demonstrates that the statistical distance
between ideal Poisson distribution and the Poisson distributions implemented
in the standard libraries is bounded by O(¢ 4 Ae), where ¢ represents the in-
trinsic error from factorial approximations (specifically, the Lanczos method)
and € = 277 captures the effect of finite-precision arithmetic with precision pa-
rameter $. This bound reveals several key insights: first, the distance breaks
down into two independent sources—factorial approximation and floating-point
precision—allowing targeted improvement of each part. Second, the linear de-
pendence on the Poisson parameter A shows that higher-rate processes need more



precision to maintain the same accuracy. Third, the exponential decrease in sta-
tistical distance with increasing precision S provides a clear trade-off between
computational cost and sampling accuracy. These findings help practitioners
make informed decisions about precision requirements based on their specific A
values and error tolerance, while also showing fundamental limitations of cur-
rent library implementations for high-rate Poisson processes. We demonstrate
through a case study from DNF counting how our bounds can be combined with
theoretical analysis (under the assumption of access to ideal Poisson distribu-
tions) of algorithms to achieve rigorous guarantees on the implemented systems.

Organisation of the Paper. In Section 2, we present the necessary preliminaries
and an overview of related concepts that lay the foundation for the techniques
discussed in the rest of the paper. Section 3 surveys related work on samplers,
and the evaluation of sampler quality. In Section 4, we outline our results on
the analysis of Poisson samplers. Section 5 details the technical concepts behind
our main result. Section 6 presents a case study demonstrating the practical
implications of our theoretical findings. Finally, in Section 6, we discuss the
implications and limitations of our work as well as future directions.

2 Preliminaries

In this work we focus on discrete distributions, specifically Poisson distribution
and its samplers. For A > 0, the Poisson distribution with parameter \ is defined
as: pa(k) = )‘k]j%k, for k € Z*. The r-th moment of a discrete distribution p over
Z7" is defined as Ep(X") = >, +o k"p(k). We use the shorthand notation u? to
denote the r-th moment of the distribution p.

A probabilistic transducer extends the classical Turing machine model by in-
corporating both an output tape and access to a source of randomness. On input
x € {0,1}*, the machine reads an infinite sequence of random bits u € {0,1}*
from a read-only random tape and writes a corresponding output M (z;u) to the
output tape. For fixed z and u, the computation is deterministic, allowing the
transducer to define a distribution over outputs induced by the randomness. This
abstraction naturally captures the behavior of randomized algorithms: given ac-
cess to a randomness source, such algorithms define a distribution over possible
outputs. A sampler for a distribution is defined to be a randomized algorithm
that outputs samples from the distribution. For instance, a sampler for a distri-
bution p (denoted by Samp,,) is modeled as a transducer that, given a random
bit string u, produces a sample = € {2 such that Pr,[Samp,(u) = x] = p(z). Let
PoiSamp denote a numerical sampler for Poisson distributions that takes input
A > 0 and outputs a sample from p). We denote the distribution induced by
this sampler as PoiSamp(\). Our goal is to upper bound the statistical distance
between py and PoiSamp(\).

Definition 1 (Statistical Distance). Letp and g be two discrete distributions
over a countable set £2. The statistical distance (denoted by A) between p and q



is defined as:

Z p() = a(a)] = sup p(4) — g(4).
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The statistical distance is 0 if and only if p = ¢, and is maximum, that is 1, if
the supports of p and ¢ are disjoint. The next lemma highlights the relevance of
statistical distance when a sampler is used within downstream applications.

Lemma 1 ([34]). Let A be a randomized algorithm that outputs 1 with prob-
ability at least 1 — § when its randomness is drawn from the distribution p. If p
is replaced by q, then Pry[A outputs 0] < § + A(p, q).

Multiple-precision Arithmetic and Log Approximations

Following [38], we define the set of all definable numbers within the bit precision
Bby F={w-2° : } <|w|<1, e€Z}, such that w is defined within 3 bits.
Here e is the exponent, and the ulp(z) = 2°~# | where ulp denotes the unit in the
last place. Let rnd : R — F be the rounding function that rounds a real number
to the nearest representable number in F within precision 5. The relative error of
the rounding function can be bounded by ‘rnd(xﬁ <2768, for x # 0 [38,27,17].
Throughout this work, we use € to denote the relative error, commonly referred
to as the wunit round-off error. For basic operations * € {+,—, ><7+,\/}, the
computed value satisfies:

[rnd(z) ® rad(y) — (z+y)| <& |z xy| (1)

where ® denotes the corresponding operation to * in F. For n real numbers
T1,...,Ty, the total summation error satisfies:

@ rnd xz Z x;

Logarithm Computation Logarithm evaluation in high-precision libraries is typ-
ically done via the arithmetic-geometric mean (AGM) method [8,38]. AGM
method assumes two sequences {wy,},{z,} of positive real numbers such that,
Wpt1 = “”‘T"’Z", Zn4+1 = \/Wn - Z. These two sequences converge to the common
limit, denoted by AGM (wy, 2¢).

Let for # € F represented as = w - 2°, we define exponent(z) = e. To
compute log(x) via the AGM method, the log computation algorithm selects an
integer m such that s = £2™ > 2%/2_ In particular, the MPFR library [38] sets

= {ﬂ;—?f‘ — exponent(z),

which ensures that s € [25/ 2 28], The logarithm is then computed as:

Log(x) =

< naz ;] (2)

m
2AGM(1,4/s)

The following lemma provides an error bound for the AGM method.

—mlog?2



Lemma 2 (Prop. 2 of [8]). The following holds for any s > 4:

T 64
— 1 < —(1 1 .
2AGM(1,4/s) 08 (5)| < 52( 0+ [log s])
Since, for 8 > 8, we have 3log(s) > 10 and 20/2 < ¢ < 2P we make the
following conclusion from the above lemma:

Log(x) — log(x)| < 102" 3

We will use the notation 7 = 1;—%6 to denote the additive error bound for the
logarithm approximation in the rest of the paper. We emphasize that a similar

error bound can be derived for the Taylor series method as well [6,7].

Factorial Approximations

Poisson samplers also require computing k!, which is approximated using sev-
eral methods. We focus on the Lanczos approximation, which is widely used in
numerical libraries. We denote this approximation by Fact™"%(k):

FaCtLancz(k) _ \/ﬂ(k+g+ %)k+%e_(k+g+%)At,g(k)

where A; 4(k) is a degree-t polynomial and ¢ (with g > —1/2) is a constant
affecting convergence. The approximation has a uniform relative error bounded
by some ¢ > 0 as follows [30],

Fact™™"?(k) — k!| < Ck!, (4)

It is standard practice to evaluate the logarithm of the factorial rather than the
factorial itself, due to improved numerical stability and efficiency. We define the
corresponding function LogFactorial that approximates log(k!) using the Lanczos
method with fixed parameters t and g, as follows:

1 1 1
LogFactorial(k) = §Log(27r) + <k + 2) Log (k; +g+ 2>

~(rorg) Flot®)  ®

3 Related Work

The study of sampling exactly from probability distributions has a rich history,
with significant contributions across various domains. Since this work focuses
on library implemented samplers, a natural question is whether there exists a
sampling mechanism in the existing libraries that can sample exactly from the
target distribution. The answer is unfortunately negative. One of the earliest



works by Von Neumann laid the foundation for sampling exactly from distribu-
tions, which has been further explored for various distributions, including the
normal and exponential distributions [21]. However, such exact sampling tech-
niques remain limited in scope and are typically feasible only for a narrow class
of distributions.

Given the inherent difficulty and inefficiency of exact sampling, much of the
research has focused on designing efficient algorithms that generate samples from
distributions that are close to the target and easier to sample from. Therefore,
all the library implementations of samplers, including NumPy and GSL use
the transformed rejection sampling framework [12,14,20,35,15]. These algorithms
achieve a constant sampling time complexity, but at the cost of approximations,
as they need to evaluate the probability mass function, an operation that is
computationally expensive unless approximated.

A natural question that arises is whether the inexactness introduced by these
approximations can be quantified in terms of some distance metric. The recent
work by Sarkar et al. [34] proposed a statistical distance framework for this pur-
pose, due to the importance of statistical distance. By leveraging the fact that
the internal workings of the sampling algorithm are observable, they enabled a
deeper analysis that allows for tighter, implementation-aware bounds on statis-
tical distance. They provided a detailed case analysis of the Binomial samplers
implemented in libraries, identifying the primary sources of error and quanti-
fying their impact on the output distribution. Specifically, their methodology
involved dissecting the internal steps of the sampler, including the evaluation of
the probability mass function, the impact of approximations and floating-point
arithmetic. By systematically evaluating each component, they were able to pro-
vide an explicit upper bound on the statistical distance between the distribution
of implemented binomial samplers and the true Binomial distribution.

A parallel line of work has focused on the evaluation of samplers in terms of
their statistical distance from the target distribution [25,10,29,28,1,24,2]. These
works focus on designing provably correct tests to assess the quality of samplers
by estimating the statistical distance between the sampler and the target dis-
tribution. However, the key limitations with these works are twofold: (1) these
tests ideally require O (Poly (1/A)) many samples to approximate the statisti-
cal distance A between the sampler and the target distribution. In real-world
applications, however, the library-provided samplers are often quite close to the
target distribution, and therefore, the statistical distance is typically quite small.
In such cases, these tests are not practical, as they require a large number of sam-
ples to approximate the statistical distance. (2) These tests assume a sample-only
access to the samplers, treating the sampler as a black-box from which samples
can be drawn, but without insight into its internal workings. In practice, how-
ever, we often have access to the implementation of these samplers, which could
allow us an easier analysis that goes beyond sample-only access to the samplers.

Finally, the impact of numerical accuracy on computational programs has
been extensively studied in the literature of verification. A large body of work
has focused on analyzing and bounding errors in fundamental arithmetic op-



erations [9,17,16,18,33]. More recently, researchers have investigated how such
numerical errors propagate in higher-level computations. For instance, [4] and [7]
have explored the effect of the errors in the performance and stability of functions
such as log-sum-exp and softmax. These studies highlight the critical importance
of accounting for numerical error when designing algorithms and evaluating their
real-world behavior.

4 Analysis of Implementations of Poisson Distributions

In this section, we first provide an overview of the Transformed Rejection Sam-
pling approach, which is the core approach implemented in the standard libraries
to enable sampling from Poisson distributions. For concreteness, we use the same
constants as in the NumPy’s implementation of Poisson distribution (v2.2.0, re-
leased Dec 8, 2024), GSL). We then state the main technical result of our paper,
the upper bound on the statistical distance between the sampler implemented
in libraries and the ideal Poisson distribution and discuss the implications. We
close off the section with a visualization of our bounds in Section 4.3.

4.1 Transform Rejection Samplers

The sampling subroutine implemented in libraries relies on the standard trans-
formed rejection sampling method [15]. At a high level, we first draw a sample
k from a hat distribution h via inverse transform, and accept k with probabil-
ity proportional to the rejection ratio r; = Z?}Ezg where a > maxy p}f((:)) is the
rejection constant.

The detailed algorithm is depicted in Algorithm 1. The algorithm relies
on a pair of functions, collectively referred to as the inverse transform func-
tion, denoted (H,h), where h is the hat distribution and # is its cumula-
tive distribution function (CDF). H is provided via its inverse function H ™!,
so that computing H~!(u) uses basic arithmetic operations [14,15,12]. Since
(H™1) (u) = 1/h(k), the hat distribution is typically represented in the recipro-
cal form h=!(u) := 1/h(k). We use h(k) and h=!(u) interchangeably, depending
on whether we are indexing by an outcome & or a uniform random variable u. The
algorithm first samples k from h using the inverse transform method, that is by
computing |H~!(u)], where u is drawn uniformly from [0, 1]. It then computes
the rejection ratio r, and accepts k with probability ri. The algorithm uses a
uniform random sample v to determine whether to accept or reject the candidate
k. Since, computing the rejection ratio ry requires evaluating the Poisson prob-
ability mass function py(k), which is computationally expensive, the algorithm
usually computes the logarithm log .

The inverse function # as used in [15] is defined as follows:

H () = (1/227_1|u| +72> u+s (6)



where the parameters 1, 72, and 3 are functions of the Poisson rate parameter
A [15], given by:

v3 = A4 0.445, 75 = 0.931 4+ 2.53 - VX, and y; = —0.059 + 0.02483 - v,

Likewise, the rejection constant « is also parameterized by A and following [15]
it can be written as o = 1.1239 4+ 1.1328/(y2 — 3.4).

Taken together, these steps form a sampler that is inherently approximate:
numerical errors influence both the proposal step (computing #~*(u)) and the
rejection step (computing log 7). In the next section, we analyze how these ap-

proximations affect the output distribution and present bounds on the statistical
di PoiSamp
istance A(py, JPA)-

Algorithm 1: PoiSamp(\)

Input : Parameter \
Output: Sample k
Initialize inverse-function-pair (#, h)
Initialize rejection parameter o
Ix < Log(\)
while True do
v 4— uniform random samples within [0, 1]
u < uniform random samples within [—0.5,0.5]
ke (1 ()
Ik, + LogFactorial(k)
ly < k®@IxO XSl ® Log(h™ ! (u)) © Log(a)
if Log(v) <, then
return k

© 0N ST RNy

=
= o

4.2 Our Results

We now analyze the deviation between the ideal Poisson distribution py and
the distribution pio'samp induced by the sampler PoiSamp. Our objective is to
identify the primary sources of error introduced during sampling and to provide a
formal bound on the statistical distance A(py, pio'samp). Unlike previous analyses
for the binomial case [34], our approach must address the unbounded support of
the Poisson distribution. To manage this, we leverage the characteristics of the
inverse transform function (#,h) used in the sampler. In particular, we utilize
the moments of the hat distribution h, which play a key role in bounding the

statistical distance. Our main result is summarized in the following theorem.

Theorem 1. Let 8 > 2[logy A] be the bit precision used by PoiSamp, and let

piOisamp be the resulting output distribution. Then the statistical distance between



piOisamp and the ideal Poisson distribution py is bounded by:

A (p,\, p§°isa’“p) < 5C+ (10985 + 5+ 5log(1 + A) + 3¢) Ae

h
+160783¢ + 2ac?ube? + %e + O(¢e)

where ¢ = 277 s the roundoff error,  is the uniform error bound from the

Lanczos approrimation and c is a constant depending on the inverse sampling

function (H,h). The terms p} and p are the first and second moments of the hat

distribution h, respectively. The term O(e) represents higher-order contributions

that are negligible compared to €.

The bound can be interpreted as O(¢ 4+ Ae), where ¢ denotes the error from
Lanczos’ factorial approximation and e captures the finite-precision error. This
decomposition shows that the statistical distance between the sampler’s distri-
bution and the ideal Poisson distribution is affected by these two sources of
error. As a result, improving either source independently leads to a correspond-
ing improvement in inexactness. This separation is particularly valuable from a
designer’s perspective, as it allows targeted optimization of numerical precision
or factorial approximation accuracy independently without requiring a complete
redesign of the sampling procedure.

We now turn to observe that the statistical distance decreases exponentially
with the bit precision f3, specifically as 2°. For large values of ), it is often in-
feasible to explicitly represent the full domain of the Poisson distribution. The
parameter 8 governs the number of domain values that can be accurately rep-
resented. Higher precision allows for a more complete and accurate support.
Increasing S by 1 doubles the number of representable domain values, thereby
bringing the sampling distribution closer to the ideal. Finally, even when the
support is representable, the probability mass function (pmf) values of the Pois-
son distribution may not be expressible under limited precision, and therefore,
causing imprecision in rejection step.

Implications of Our Results Our findings offer both theoretical and practical
value for the design and deployment of Poisson samplers in real-world systems.
In particular, as implied by Lemma 1, when an implementation of a randomized
algorithm makes an API call to an implementation of Poisson distribution, say
PoiSamp, then probability of failure of the implementation can be bounded in
terms of the statistical distance between the PoiSamp’s output distribution and
the ideal Poisson distribution. Therefore, it is crucial to advocate for the use of
PoiSamp in applications that require Poisson sampling.

Building on this, we advocate for an extension to existing Poisson sampler in-
terfaces that allows users to express and monitor accuracy requirements directly.
Specifically, we propose two additions to the sampler API (see Figure 1):

(1) an input parameter d;,, which lets users specify a target upper bound on the
statistical distance from the ideal py distribution, and



def PoiSamp (lambd): def PoiSamp(lambd, delta_in):

nmnn nwmnn

Input: lambdbd Input: lambd, delta_in
Output: sample Output: sample, delta_out

nmmnn nwmnn

Fig. 1. Early (left) and new (right) sampler interfaces. The new version includes sta-
tistical distance control via delta_in and delta_out.

(2) an output parameter doy,¢, which reports the actual statistical distance achieved
by the sampler at runtime.

These extensions enable users to have control over the trade-off between ac-
curacy and efficiency. For instance, when &;, is loose, faster approximate imple-
mentations may be employed; when tighter guarantees are required, the sampler
can internally adjust precision to meet the specified bound. The output oyt
provides runtime visibility of the deviation.

4.3 Visualization

To illustrate the implications of our theoretical results, we visualize, in Fig 2, the
upper bound on the statistical distance A(pio'samp, p») derived in our main the-
orem for various values of A and precision 8. This plot is generated directly from
the analytical bound derived in our main theorem. To evaluate the statistical
distance empirically, we need two additional components to be specified:

(1) The hat distribution h used in the sampler, which is defined by the inverse
function H 1.
(2) The factorial approximation scheme used in the sampler.

For the hat distribution, we fix the inverse transform function defined in
Equation (6). Considering this inverse function we can fix the value of ¢ = 10.
Now we need to understand the moments yfy and p of h. We can compute a
trivial upper bound on these moments. Particularly, for € {1, 2}, we can bound
ph as follows:

ph = E[X"] = kgokrh(k) < max(k") - E[1] = max(k")

Since for the hat distribution h the domain is unbounded, the trivial upper bound
on the moments is not very useful. However, we can use the fact that maximum
mass of the hat distribution h is concentrated within a bounded range. Therefore,
ph can be approximately bounded as

K
h—E[X"T<Y Ek"h(k)+6< E)+6 < k"
Hr = E[ ]_1;) () +0< max (k) +85 max (k)

10
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Fig. 2. Heatmap of the upper bound on the statistical distance A(p) ,Pr) as a
function of A and precision (3, as predicted by our bound. The color intensity indicates
the distance, with darker shades representing larger distances. The results show that
the distance increases with A, indicating better sampling guarantees. The precision
also plays a crucial role, with higher values leading to lower distances. The ‘xx’ shaded
region indicates the illegal region 8 < 2[log, A].

Since 99% of the probability mass of h would be concentrated within [0, H~1(0.49)],
we conservatively upper bound the effective support of h by:

HL(0.49) < X+ 7.397V/\ — 2.617

Combining these, we can approximately bound the moments as follows:
2

1 < (A4 7397V — 2.617) p <A+ T7.397VA — 2,617

This simplifies our bound in Theorem 1 to:

A (pA, p§°isa"‘p) < 5+ (10985 + 35 + 5log(1 + ) Ae + 16078¢
+ 2000 (A + 7.397V/A — 2.617)%€2 + 5a(\ + T.397VA — 2.617)e

For the factorial approximation, we adopt the Lanczos approximation, which
is widely used in libraries and we set the factorial error bound ¢ using conserva-
tive parameters ¢ = 6 and g = 5, based on the bounds from [30] (see section 2).

Figure 2 presents a heatmap of the statistical distance as a function of A and
B. The color intensity reflects the magnitude of the distance, with darker regions
indicating higher error. Since our theoretical guarantees are only valid when
B > 2[logy A, we explicitly mark the invalid region in the plot. The range of
spans from single-precision floating point (5 = 32) to double precision (8 = 64),
reflecting typical usage in practice. The visualization confirms that increasing 3
leads to a smaller distance, and that higher values of A require greater precision
to maintain accuracy—both aligning with our theoretical insights.

11



5 Detailed Technical Analysis

In this section, we present a detailed analysis of the errors introduced by the
Poisson sampler PoiSamp and prove our main result Theorem 1. We begin by
outlining the sources of deviations, followed by a formal proof of the theorem.

As the name, Inverse Transformed Rejection sampling, indicates that there
are two sources of deviations from Ideal distribution that we must account for:

E1 (Deviation due to Inverse Transform): Due to the use of finite-
precision arithmetic in evaluating the inverse CDF H~!(u), the drawn value
k may differ from the intended value k, introducing a perturbation in the hat
distribution h itself.

E2 (Deviation due to Rejection Ratio Evaluation): This component
stems from approximating the Poisson mass function py(k), particularly in the
evaluation of expressions like log(\*/k!) using numerical routines such as Log
and LogFactorial. These approximations—combined with finite-precision arith-
metic—introduce error into the rejection ratio r; and, consequently, into the
acceptance probability.

Deviation due to Inverse Transform Sampling (E1) The first source of devia-
tion, E1, originates from numerical inaccuracies in computing the proposal k
by H~!(u), during transformed rejection sampling. Rather than committing to
a particular hat distribution, we treat this error abstractly and assume that
any implementation of ! involves a sequence of basic arithmetic operations
{+,—, x,+,+/ }. Each operation introduces a small rounding error, which accu-
mulates multiplicatively. We bound the total relative error by a factor ey = cg,
where ¢ = 277 is the machine roundoff and ¢ > 0 is a constant dependent on the
number of operations involved. In practice, for the standard inverse transform
function defined in eq. (6) ¢ < 10; therefore for 8 > 5, we have ey < %

As a result, the computed value H~!(u) deviates from the true value H ! (u)
and lies within the range [(1 — ex)H ' (u), (1 + ex)H '(u)]. When the final
output is obtained by applying |-| to this approximate value, it may produce
any neighboring integer k' € [(1 — )" ! (u), (1 + e31)H ' (u)] instead of the
correct k. This deviation perturbs the proposal distribution h, resulting in a
modified distribution h that we analyze in the next lemma.

Lemma 3. Let h be the perturbed hat distribution due to finite-precision errors
in evaluating H=1(u), and let e3y = ce, where ¢ > 0 depends on the number of
operations in H=1(-). Then, for all k >0,

(1 —en(Bk+1))h(k) < h(k) < ey (1+ Sg)h(k),

where Sk = 1cp o, Wet(t + 1), wie = h(t)/h(k), and

Ly = Hﬁw : k—l} . Uy = [k:—H, H;H +1} .

12



Error in Rejection Ratio Computation (E2) The second source of error, E2, stems

from approximations used in computing the rejection ratio ry = 2?183 However,

in a practical implementation, neither py (k) nor h(k) are evaluated exactly. The
evaluation of py(k) requires computing:log px(k) = klog A — A — log(k!), where
log(k!) is approximated using the Lanczos method, and logarithms and arith-
metic operations are performed \Q/j;uhin the given precision. Let 7 denote the
)

computed rejection ratio 7, = p*aw, where pimsamp(k) is the numerically

computed approximation of py (k) using finite-precision logarithms and factorial
estimates. The dominant sources of error in computing 7, are:

(a) Logarithmic evaluation error: Logarithmic terms such as log A and
log(k + g + 3) are evaluated using the finite-precision logarithm function
Log. As shown in Equation (3), this introduces an additive error of at most
7=0(e).

(b) Lanczos approximation error: The value of log(k!) is not computed
exactly but approximated using the Lanczos formula, as defined in Equa-
tion (5). This involves not only the error due to factorial approximation but
also the logarithm errors.

(¢) Arithmetic rounding error: The final Poisson log-probability expression,
given by

k- Log(\) — A — LogFactorial(k) — Log(h(k)),

involves a sequence of arithmetic operations including addition, subtrac-
tion, multiplication, division, and square root. Each operation performed in
finite precision arithmetic introduces a small rounding error, and these ac-
cumulate proportionally to the number of operations and the unit round-off
erTor €.

These sources combine to influence the actual rejection ratio 7. The following
lemma formalizes the effect of these approximations on the rejection ratio.

PoiSamp
Lemma 4. Letr, = Zﬁgzg denote the ideal rejection ratio and r, = pAT(k)(k) the

rejection ratio computed using finite-precision arithmetic. Then, for all k > 0,
we have (1 —3¢ —Ae) < T < (1+ 3¢+ Ae) where ¢ is the uniform bound on

the Lanczos approzimation error, e = 277 is the floating-point unit roundoff,
and A = (722k + 1068)3 + 10\ + 10k log k + 10log(h~1(u)) + ¢

6 Case Study: DNF Counting

Now we illustrate how our theoretical bounds can be integrated into practical
tools. To showcase the applicability of our bounds, we utilize them in conjunc-
tion with an off-the-shelf Poisson sampler to implement a recent proposed DNF
counting algorithm [37]. The problem of counting the number of satisfying as-
signments for a DNF formula is a well-known #P-hard problem. A DNF formula
is a disjunction of conjunctions of literals, where each conjunction (clause) rep-
resents a set of conditions. For example, (x1 A—x2)V (x2A—x3) is a DNF formula
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with clauses like (x1 A —z3). A DNF formula ¢ := 1 V...V ¢, has m clauses,
and the number of its solutions is denoted as |sol(y)|.

Since the problem of DNF counting is #P-complete, the problem of approx-
imately counting the |sol(p)| for a DNF formula ¢ has been studied extensively
in the literature [22,23,36,37]. We outline the algorithm of Soos et al. [37] in al-
gorithm 2. This algorithm maintains a bucket X to keep sampled solutions from
DNF clauses and, also, a probability parameter p such that, for any solution
o of ¢, number of copies of o belongs to X follows a Poisson distribution with
parameter p. To achieve this goal, the algorithm removes all the elements o from
bucket X if o satisfies ¢;. The algorithm next samples new solutions from ¢;. To
determine the number of solutions, the pepin asks for a sample N; from Poisson
distribution pj,,|,. It is important to note that ;| is easy to compute since it
is simply 2"~ %, where k is the number of literals in clause ;. The algorithm
then adds N; many new satisfying assignments (not necessarily distinct) of ¢; to
X. If the bucket overflows, the algorithm keeps on removing elements uniformly
from the bucket until the bucket size falls under the threshold. The end goal of

pepin is to output the ratio ‘pﬂ which is a good estimate of |sol(p)|, and with

high probability, (1 — &)|sol(y)| < 2L < (1 4 &)sol(y)].

Since the core randomness of pepin algorithm relies on the sampler PoiSamp,
the statistical distance between the distribution pio'samp and the ideal Poisson
distribution p) directly impacts the quality of the output. Here we illustrate
how our bounds can be used to provide guarantees on the output of pepin when
PoiSamp is used instead of an ideal Poisson sampler. Throughout this section, we
will use the simplified version of our bound as given in eq. (7), which is derived
from theorem 1. For the completeness of presentation, we restate the bound as
a function of A here:

Erra(A) = 5¢ + (109883 + 35 + 5log(1 + \)) Ae
+ 16078 + 200a (A + 7.397V/X — 2.617) ¢
+ 5a (X + 7.397V\ — 2.617)e

Following the work of Sarkar et al. [34], we illustrate (1) the algorithmic
modifications needed to incorporate the bound on the statistical distance and
(2) the analysis modifications needed to provide guarantees on the output of
pepin. The modifications needed to the algorithm are minimal, as shown in
algorithm 2. The only change needed is to compute the statistical distance bound
Erra(]sol(yi)|p) after sampling from the Poisson distribution in lines 9 and 15
and accumulate it in a variable §’. This variable keeps track of the total statistical
distance accumulated so far. The algorithm returns the estimate ‘%‘ along with
0’. If at any point, the accumulated statistical distance ¢’ exceeds the user-
specified error tolerance 91, the algorithm returns a failure message. The analysis
of the modified algorithm is also straightforward. The only change needed is
to account for the additional deviation introduced by the Poisson sampler. By
a union bound, the total error of the algorithm due to PoiSamp is at most
0'. Therefore, if 8’ > 01, the algorithm is no longer guaranteed to provide the
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desired approximation with high probability, or in other words, if the algorithm
does not return ‘Failure’, the algorithm provides the desired approximation with
probability at least 1 — Js.

Ezxperimental Setup We implement the pepin algorithm as described in algo-
rithm 2. We use the Poisson sampler implemented in NumPy (v2.2.0, released
Dec 8, 2024) as PoiSamp. We set the error tolerance parameters ¢ = 0.8 and
6 = 0.36. We set k = 0.5 to split the error budget equally between the algo-
rithmic error and the deviation due to PoiSamp. We run our experiments on a
machine with AMD EPYC 9654 (Zen 4) @ 2.4 GHz. We use the set of DNF
formulas from Soos et al. [37] since they were used as a benchmark in their
accuracy evaluation.

Experimental Results We evaluate the performance of the pepin algorithm on
the benchmark DNF formulas. Our experiments focus on measuring the accu-
racy of the estimated solution counts and the statistical distance bounds provided
by the algorithm. The modified pepin algorithm successfully provides accurate
estimates for the number of satisfying assignments for all the benchmark DNF
formulas as shown in section 6. The reported statistical distance bound ¢’ by the
algorithm for individual instances are shown in section 6. The reported bounds
are well within the specified tolerance limit of §; = 0.18. The reported boundss
increase with the number of clauses in the DNF formula, as shown in section 6,
which is expected since the number of calls to the Poisson sampler increases lin-
early with the number of clauses. Overall, the experimental results demonstrate
that the modified pepin algorithm effectively integrates the Poisson sampler
while maintaining high accuracy and providing reliable error bounds.

1.0 10
=== Maximum Error Threshold s
A pepin 3
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£ Z
8 a 6
o g
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£ 2,
K 3
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0 20 40 60 80 100 120 EY 50 70 8 100 120 0 210 280 300 50 700
Number of Solved Instances Number of Clauses (per instance)
(a) Accuracy experiment results for (b) Reported statistical distance (&)
pepin. The red line represents the tol- by pepin averaged over instances with
erance factor (¢ = 0.8). the same number of clauses.

Fig. 3. Experimental results for pepin.
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Algorithm 2: pepin (p,¢,6, k)
(The modifications to the original algorithm are highlighted)

1: 01 ¢ KO; 02 < (L — K)d

2: Initialize T « (w)
3: Initialize p + 1, and multiset X <
4: 6§ +0
5. fori=1 to m do
6: for all 0 € X do
7: if o Yi then
8: remove o from X
9: N; < PoiSamp(|sol(y;)|p)
10: 8" < Erra(|sol(pi)|p)
11: 8 8 46"
12: if N; + |X‘ > T then
13: Randomly remove elements from & with probability %
14: D Dp/2
15: N; < PoiSamp(|sol(p;)|p)
16: 8" < Erra(|sol(ei)|p)
17: § &'+ 6"
18: if 8’ > 8, then
19: return “Failure: Error tolerance exceeded”
20: Add N; many (not necessarily distinct) satisfying assignments of ¢; to X
21: return |X|/p

7 Conclusion

This work presents the first formal analysis of the statistical distance between
practical Poisson samplers and the ideal distribution. Extending the framework
of Sarkar et al. [34] to the unbounded Poisson case, we analyze NumPy’s in-
verse transform implementation and establish a bound of O(¢ 4 Ae) on the total
variation distance, where ¢ captures factorial approximation errors and e re-
flects finite-precision effects. The key technical challenge lies in handling the
unbounded support of Poisson distributions, which we address by leveraging
moments of the hat distribution h. Our analysis reveals two independent er-
ror sources: Lanczos factorial approximations and arithmetic rounding, enabling
targeted optimization strategies.

Beyond immediate contributions to Poisson sampling, our methodology pro-
vides a template for analyzing other unbounded discrete distributions. The pro-
posed API extensions—allowing users to specify accuracy requirements and re-
ceive runtime guarantees—point toward formal reliability assurances in statisti-
cal computing libraries. As randomized algorithms become increasingly central
to computational science, such formal guarantees on fundamental building blocks
transition from desirable to essential.
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A Detailed Analysis

A.1 Technical Proof of the Main Result

We begin by presenting the proof of our main result, Theorem 1, leveraging the
supporting lemmas Lemma 3 and Lemma 4. The proofs of these lemmas are
deferred to later in this section. For completeness, we first restate the theorem
below.

Theorem 1. Let 8 > 2[log, A] be the bit precision used by PoiSamp, and let
pio'samp be the resulting output distribution. Then the statistical distance between

pic’isamp and the ideal Poisson distribution py is bounded by:
A (pA, p§°‘5"’mp) < 5C+ (10988 + 5+ 5log(1 + A) + 3¢) Ae
h
+16078¢ + 2ac?uhe? + %5 + O(¢e)
where ¢ = 277 is the roundoff error,  is the uniform error bound from the

Lanczos approrimation and c is a constant depending on the inverse sampling
function (H,h). The terms p} and p are the first and second moments of the hat
distribution h, respectively. The term O(e) represents higher-order contributions
that are negligible compared to €.

Proof. Before we begin, without loss of generality, let us assume h(—1) = h(n +
1) = pa(—1) = 0 and r_; = 0. Additionally, we define the event ‘accept’ as the
event such that the sample % is sampled by the sampler. Then the probability
of a point k in the sampler’s distribution is given by pio'samp(k) = Pr(k|accept).
Applying Bayesian rule we get,

Pr(accept|k) Pr(k) Fh(k)

PoiSamp k) — _
P (k) Pr(accept) Pr(accept)’
Therefore, to get a bound on piOisamp(k), we will use lemma 3 and lemma 4 to

bound 7%, h(k), and Pr(accept). First we start with lower bounding Pr(accept).
In PoiSamp a sample k being sampled from h, is accepted with probability 7.
Therefore averaging over all possible k, Pr(accept) can be expressed as:

Pr(accept) = ZPr(accethﬂ) Pr(k) = ZFkﬁ(k)
k>0 k>0
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Substituing, the lower bounds of 7, E(k) from Lemma 4 and Lemma 3 respec-
tively, we get the following lower bound on Pr(accept):

Pr(accept)
> Z(l — 3¢ — (722K + 1068)8s — 10\e — 10k log ke — 10log(h™! (u))e — O(e))
E>0
(1= 8k + Dey)rih(k)
> Z(l — 3¢ — (722K + 1068) 8 — 10\e — 10k log ke — 10log(h™(u))e — O(e))
E>0

(11— 3k + 1)@1)‘“5“)

The last inequality follows from the definition of rejection ratio r, = Zﬁgg We

further simplify the above expression. Since py(k) - h™'(u) < «, we have the
following inequality:

> pa(k)log(h™ (u)) = > pak)log (pal )h_l(u))-FZPA(/f)lOg(p/\l(k))

k>0 k>0 k>0

1
<loga + 3 log(2meN).

The last inequality uses the bound on entropy of the Poisson distribution,
Ek~py [—log(pa(k))] < % log(2mel) < Llog(2me) + g Also, we have

E [klogk] < Alog(1l+ ).
k~pa
Combining the two inequalities above, we obtain the desired lower bound on
Pr(accept),
1
Pr(accept) > (1 — 3¢ — (742X +1073)Be — (3A 4+ D)eyy — O(e)) - —

«

Now let us move back on to bounding ppo'samp(k). Next using the upper

bound on 7 from Lemma 4 and the lower bound on Pr(accept) from above, we
can obtain the following upper bound on pPo'SamP( k):

phoisamP (k) < (1 +9¢ + (2186k + 3209) B + 10\e + 10k log ke

pa(k)h(k)

+10log(h™"(u))e + (6A + 2)eg + O@) " hik)

Now to finish with the proof we need to bound the ratio % which capture the

multiplicative deviation between the sampling hat distribution from the ideal hat
distribution h. We use Lemma 3 to bound this ratio. For ease of readability we
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introduce the notation rj (parameterized by k) kx = €3 > ycr, Lu, Wkt - (E+1).

PoiSamp (k‘)

Therefore the bound on p, reduces down to the following:

phoiPamP () < (1 +9¢ + (2186k + 3209) Be + 10Ae + 10k log ke
+10%og(h ™! (u)e + (61 + ez + O() ) - (14 1) - pa(k)
(1 +9C + (2186k + 3209) 8¢ + 10\e + 10k log ke
+(

+10log(h~(u))e 6/\+2)6H+nk+0(a))-m(k)

To finish with the proof we start by focusing on the expected value of the term
ki first. Particularly, we begin analyzing the term kipx(k) to upper bound
> k>0 KkPA(k) as follows:

Z,‘ﬁk pa(k) = en Z ( Z Wt - (T + 1)) pa(k)

k>0 k>0 \teL,UUy
<en Y ( S e (t+ 1>> ah(k) (pa(k) < ah(k))
k>0 \teL,UUs
< 67.[0[2 ( Z ) (t+ 1)) (Def. of wgy)
k>0 \t€L,UUy
—EHaZh (t+1) |{k:t€LkUUk}|
>0
<epad h(t)- (t+1)- (dep(t+1)+1) (Bounds on Ly, Uy)
>0

<o (465> h(E)(t+ 1) + 1 > h(t)(t+1)

t>0 t>0

Since, En(X) = > ps0kh(k) and En(X?) = 3°,-,k*h(k), we can rewrite the
above expression as: B

Z w pa(k) = dae?, ]E(X2) + aey IE}(X) = daed, py + asyh
k>0

The final inequality follows from the definition of u} and uf. Finally, recall

the statistical distance between the sampler’s distribution p§°isamp and the ideal
Poisson distribution p) is given by,

oiSam 1 oiSam
AR, pa) = 5 D PRSP (K) — pah)
k>0
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Substituing the upper bound for pidsamp(k), we get,

A(pioiSamp’ p)\)

1
<3 > ’94 + (2186k + 3209) e + 10)e + 10k log ke
k>0

+10log(h™'(u))e + (6X + 2)ew + rx, + O()| - pa(k)
<5¢ + (1098) + 1607)Be + 5Ae + 5Alog(1 + N)e
+ 3\ + 1)egy + 2ae?, ub + O[ETH/J? +0O(¢)

=5¢ + (10988 + 5 + 5log(1 + A) + 3¢) Ae + 16075 + 2021l + %T”u‘; +O(e)

This completes the proof of Theorem 1.

A.2 Analysis of Error Type E1

In this section, we analyze the first source of deviation in the sampling process,
denoted as error type E1. As discussed earlier this error arises from the dis-
crepancy in the hat distribution h used in the transformed rejection sampling
method. Our goal is to formally bound this deviation. To this end, we prove
Lemma 3. For completeness, we begin by restating the lemma below.

Lemma 3. Let h be the perturbed hat distribution due to finite-precision errors
in evaluating H~'(u), and let €3y = ce, where ¢ > 0 depends on the number of
operations in H~'(-). Then, for all k >0,

(1 — €H(3k+ 1)) h(k) < h(k) < 67.[(1 + Sk)h(k),

where Sk =Y cp o, Wkt(t + 1), wie = h(t)/h(k), and

Le =[] -], U= [k, |22 ] ]

Proof. Without loss of generality assume h(k) = 0 for all & < 0. Let the “true”
value of |H~!(u)| be k, and let k' be the value produced by Algorithm 1.
Since k' € {t € Z | |[(1 —ex)H Hu)] <t < [(1+en)H ' (u)]}. Hence
a proposal k can be produced by t € Hlfm—‘ , Lk_tiJ — 1} . We define sets

Ly = [[k/(1 +ey)],k—1] and Uy := [k +1,[(k+1)/(1 —ey)] + 1]. We can
express h(k) as,

o
—
=y
~
|
>
—
=y
~
_|_
g
]
—~
e
Il
o
ES
|
_
—
S
~—
[
Il
~+
~—
>
—~
~
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We will prove the lemma in two parts: we first prove the upper bound and then
the lower bound.
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Upper bound. An upward error from ¢ to any ¢’ > ¢ can only occur if

’
t S t+1
l4+ey = 14+ey

H_l(u) >

This implies that the potential error sources lie in the top ey-fraction of [t,t+1).
Hence under the uniform assumption on H~*(u) over [¢,t+ 1) we can bound the
probability of k' being ¢’ >t + 1 given |H~!(u)| = t, which essentially means
that the probability mass can ‘leak’ to k' > ¢ + 1 only if H~!(u) falls within
this upper e4-fraction interval. This leakage probability can be explicitly upper
bounded as follows:

Pr(k' >t+1] K (w)] =1)

_ /”‘t“ Pr(K = t+1] [H7 ()] = t.H ™ (W) = v)-

=t

t+1

v=t+1
g/ Pr(k >t 1] | H " (w)] =t,H "(u) = v) dv

=1+5H
v=t+1
t+1
S/ dv:w§€9{(t+l)
v t+1 (14+ey)
1+EH

The last inequality follows from the fact that
Pr(k'>t+1||H '(w)]=tH '(u)=v) <L

We can also upper bound the probability of k’ being ¢’ < t given |H!(u)| =
t in a similar way, by Pr (k' <t—1|[H '(u)] =t) < ey(t + 1). Therefore,
£,

combining, we can upper bound the probability mass:

F(k:)§<1+5H > wkt-(t—f—l)) h(k)

te L UUg

Lower bound. We now turn to establishing a lower bound on the probability
that the output of the sampler remains accurate, i.e., that the value returned
is exactly k' = k, given that the (floor of the) inverse CDF approximation is
(R (w)] = k.

Observe that if the value H~!(u) lies within the interval

{ k k1 }

l—ey? 14ey |’

then, even though the rounding behavior and the error bounds on the inverse
function, the sampled number will be ¥’ = k with probability 1, i.e., no over-

shoot or undershoot occurs. Therefore, within this interval, all mass contributes
faithfully to h(k), the probability that the sampler returns k.
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To compute the amount of mass that safely lands in this range, we take the
length of the interval:

Pr(k'=k||[H '(v)]=k) > £tL — &

= l4eyn l—ey
=(k+1)(1—en+0(e5)) —k(1+ex+ 0O(3))
>1—ey(2k+1)

Thus, at least (1 —ey (2k+1))-fraction of the probability mass originally assigned
to k by h remains intact in the distribution h, yielding:

h(k) > (1 —ey(2k+1))h(k).

This completes the proof.

A.3 Analysis of Error Type E2

In this section, we analyze the second source of deviation in the sampling pro-
cess, denoted as error type E2. As discussed earlier, this error arises from the
approximation of the factorial terms, logarithms, and basic arithmetic operations
in the rejection ratio computation. Our goal is to formally bound this deviation.
To that end, we prove Lemma 4. For completeness, we begin by restating the
lemma below.

px (k)

PoiSamp
Lemma 4. Letr, = ah(E) denote the ideal rejection ratio and 1y, = P 0R) 4

ah(k
rejection ratio computed using finite-precision arithmetic. Then, for al% I)c >0,
we have (1 — 3¢ — Ae) < i—: < (14 3¢+ Ae) where ¢ is the uniform bound on
the Lanczos approzimation error, € = 277 is the floating-point unit roundoff,
and A = (722k + 1068)3 + 10\ + 10k log k + 101log(h~*(u)) + ¢

To prove Lemma 4, we begin by analyzing the effect of factorial approxima-
tion on the rejection ratio and consequently we will show how logn! is approxi-
mated using LogFactorial, and their effect on the rejection ratio. For the purpose
of the proof, we introduce a new notation p/i**" as the intermediate distribution,
which denotes the distribution where only the factorial computations are approx-
imated and all other computations are exact. Similarly we define r}:ter = "5:7;%)

as the rejection ratio of if we were to use the intermediate distribution p'j\‘ter in-

stead of the ideal Poisson distribution. We formalize the notion of intermediate
distribution using the following lemma.

Lemma 5. For all k > 0, (1 — 3¢)pa(k) < per(k) < (1 + 3¢)pa(k), where

denotes the uniform error bound due to the Lanczos approximation and p')(‘ter

denotes the intermediate distribution.

Proof. We begin by denoting the approximated probability mass, as calculated
by PoiSamp, with p, (k) for all k € [n], such that,

e~ ANF

Sk — A
PK) FactLa"cz(k)
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But, here py is not necessarily a well defined distribution, since Y _, Py (k) is not
necessarily 1. We normalize p, to a distribution and observe that the normalized
distribution corresponds to the intermediate distribution p'/{“e', that is,

B)\(k) _ nter
>i>0 PA() =)

From eq. (4) we have (1—)k! < Fact™"(k) < (1+¢)k! for all k € [n]. Therefore,

1 _ 1
> palk) - ) S NOESPENGE =0

k>0 k>0 E>0

Therefore for all k € [n] we have the following sets of inequalities:

(1-0) Bal) (1+0)
roPWss_5m Sa-on®
— 1=30mk) < <PE o 30p )

>iz0PA(d)

The third and the last inequalities follow due to the fact that for ¢ < 1/3,
1-¢
and ﬁ >1-— 3C -
Since, pliter (k) = %, the result follows directly.
Before proceeding with the proof of Lemma 4, we need to address one re-
maining component: formalizing the error bound introduced by the LogFactorial
function. We state this formally in the following lemma.

Lemma 6. The additive error introduced by using Log in a single LogFactorial
call can be bounded by (k + 2)7. Specifically,

log(Fact™"#(k)) — (k + 2)7 < LogFactorial(k) < log(Fact""*(k)) + (k + 2)7

Proof. Given a fixed integer k, the function LogFactorial(k) evaluates the follow-
ing expression:

1 1 1 1
5Log(27r) + (k + 2) Log (k +g+ 2) - (k +g+ 2) + Log (At 4(k)),

where all logarithmic computations are performed using the approximate log-
arithm function Log(-) based on the AGM method. From the approximation
guarantee in Equation (3), we know that for any = > 0,

|Log(x) —log(x)| <,

where 7 = 1;?,6 is the additive approximation error incurred in computing each

logarithm.
We now analyze the cumulative error when applying Log to the components of
the Lanczos approximation. Using the above bound, we can replace each Log(z)

25



term in the expression with its corresponding log(z) plus or minus 7, depending
on whether we are computing the upper or the lower bound. Specifically, we
upper bound LogFactorial(k) as follows:

o 1 (-3 e5-2) et

g;log(2ﬂ')+;7'+(k+;) [log<k+g+;> +r}
—(k+g+;)+ﬂ%@%ﬂ%»+ﬂ

1 1
= log(Fact""*(k!)) + (2 +k+ 5+ 1) T

= log(Fact"™"=(k!)) + (k + 2)T.
An analogous argument provides a lower bound:
LogFactorial(k) > log(Fact™"*(k!)) — (k + 2).
Combining both bounds, we conclude that:
|LogFactorial(k) — log(Fact™"*(k!))| < (k + 2)T,
which completes the proof.

We are now ready to prove Lemma 4, which provides a bound on the rejection
ratio computed by PoiSamp. The proof will leverage the bounds established in
Lemma 5 and Lemma 6.

Proof (Proof of Lemma 4). We begin by the definition of the rejection ratio 7
computed by PoiSamp, which is given by,

Irp =k ® 1, © A0 1, @ Log(h~!(u))

We bound each term in the above expression separately and then combine the
bounds to obtain the final bound on Ir). We start with the term Log(h™!(u)). We
assume that the computation of h~!(u) has constant number ¢ > 0 of arithmetic
operations. Therefore the multiplicative error introduced in the computation
of h™'(u) is bounded by ce. Therefore, the computed value of Log (h=*(u)) is
bounded by Log ((1 + ce).h’l(u)). Consequently, using eq. (3) we can upper
bound the term by,

Log (1 + ce).h ™' (u)) <log (h™'(u)) +log(l +ce) + T (8)

Similarly, considering the error in the term k®1y, we deduce using eq. (1), eq. (3)
that,
E@ly < (1+e)klogA+ kT + kte (9)
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Lastly, we are interested in the error in the computation of l;. Using lemma 6,
we can lower bound the term as follows:

log Fact"™"# (k) — (k + 2)7 < I (10)
Thus, we can bound k ® [, using eq. (9) and eq. (10) as follows:

E®ly—1
<(1+¢e)klog X — log Fact""*(k) + kr + kre + (k + 2)7 (11)

Similarly, using the fact that log Fact""*(k) < klog k, we can bound k ® I + Iy,
to be at most,

(14 e)klog A + log Fact"*"* (k) + k7 + kre + (k + 2)7
<(1+e)klogA+ klogk + kT + kre + (k + 2)7 (12)
Until now we have taken care of the errors due to the computation of the loga-
rithms and factorials. Next we accumulate all the errors due to basic arithmetic
computations in the computation of lry. We first bound the compound sum
using eq. (2):
k@O X1, @ Log(h™ (u))
<k ®1Iy — A=l + Log(h™*(u))+
4e (k@ Ix + A+l + Log(h™"(u)))

Using the corresponding bounds from eqgs. (11) and (12) we can bound the above
expression by,

k@I 6 XSl ® Logh™ (u))
<klog A\ — X — log Fact"*"(k) + log(h~*(u))
+ kT4 (k+2)T +cklog A +log(l+ce)+ 7
+4e (klog A+ A + klogk + log(h™' (u))) 4+ O(kre)

This accumulates all the errors due to the computation of the logarithms, fac-
torials, and basic arithmetic operations. Define Iry := log(ri"®"). Therefore we

now upper bound l~7’k using the above expression as follows:

Irk =k @1\ © A0 Iy @ Log(h™!(w))
<y + (2K + 3)7
+5¢ [klog A+ A + klog k + log(h™*(u))]
+log(1 + cg) + O(kTe)
<Irg + (2k + 3)7 + 5kBe + 5Ae + 5k log ke
+ 5log(h™(u))e + log(1 + ce) + O(kre)
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The second inequality follows from log A, log k < 8 (due to our choice of §). Let
I' := (2k+3)7+5kBe+5Ae + 5k log ke +5log(h~* (u))e + O(kte). Using a similar
set of inequalities, we can also lower bound l~rk by l~rk >lr, —log(l+ce)—T.
Therefore, considering 7 = elr k and using inequalities e < 1+2z,¢7% > 1—2x,
we get the following bound on the obtained rejection ratio:

e < (14 ce) - el
< (1 4 21 + ce + O(kre))
< riMter(1 4 178(4k + 6)Be + 10kBe + 10\ + 10k log ke
+ 10log(h ™ (u))e + ce + O(ke?))
= e (1 4 (722k + 1068)Be + 10\e + 10k log ke
+ 101log(h™*(u))e + ce + O(ke?))
The last inequality follows from substituing the value of 7. Similarly, using the

lower bound Iry, > lry —log(1+ce) — I we have, 7, > rj"e"(1 — (722k +1068) 3 —
10X\e — 10k log ke — 10log(h=!(u))e — ce — O(ke?)). Finally, applying the bound

. rlnter
on the ratio P

. from lemma 5 we have,

(1—3C—A5—(’)(5))§@§(1+3C+A5+O(5))
Tk

The final statistical distance between the output distribution p§°isamp and the
true distribution py accounts for both sources of error. By combining Lemmas 3
and 4, and bounding the cumulative error over all values of k, we obtain the main
theorem (see Theorem 1) showing that the total deviation scales as O(¢ + Ae),
with constants depending on the inverse sampling implementation.
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