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Abstract. Randomized algorithms depend on accurate sampling from
probability distributions, as their correctness and performance hinge on
the quality of the generated samples. However, even for common dis-
tributions like Binomial, exact sampling is computationally challenging,
leading standard library implementations to rely on heuristics. These
heuristics, while efficient, suffer from approximation and system rep-
resentation errors, causing deviations from the ideal distribution. Al-
though seemingly minor, such deviations can accumulate in downstream
applications requiring large-scale sampling, potentially undermining al-
gorithmic guarantees. In this work, we propose statistical distance as a
robust metric for analyzing the quality of Binomial samplers, quantify-
ing deviations from the ideal distribution. We derive rigorous bounds on
the statistical distance for standard implementations and demonstrate
the practical utility of our framework by enhancing APSEst, a DNF
model counter, with improved reliability and error guarantees. To sup-
port practical adoption, we propose an interface extension that allows
users to control and monitor statistical distance via explicit input/out-
put parameters. Our findings emphasize the critical need for thorough
and systematic error analysis in sampler design. As the first work to fo-
cus exclusively on Binomial samplers, our approach lays the groundwork
for extending rigorous analysis to other common distributions, opening
avenues for more robust and reliable randomized algorithms.

1 Introduction

Randomization stands as a cornerstone of computer science, permeating algo-
rithm design from the field’s earliest days to its cutting-edge developments. From
Quicksort [20], one of the most widely used algorithms, to modern cryptographic
protocols, randomization has proven indispensable in achieving efficiency and
functionality that deterministic approaches struggle to match. While the fun-
damental question of whether randomization offers additional computational
power over determinism remains open, randomized algorithms have established
themselves as the preferred choice in numerous domains, including data struc-
tures [42], hash functions [11], and probabilistic data structures [6].

At the heart of every randomized algorithm lies its ability to sample from
probability distributions. The algorithm’s correctness and performance guaran-
tees intrinsically depend on the quality of these samples. For instance, a hash
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table’s performance relies on the uniformity of its hash function’s output dis-
tribution, while a Monte Carlo algorithm’s accuracy depends on the fidelity of
its random sampling process. This fundamental reliance on sampling has led to
the development of sophisticated sampling algorithms implemented as standard
library functions across programming languages.

While specialized techniques exist for generating high-quality samples from
certain distributions [29], these approaches typically circumvent direct probabil-
ity mass computation through transformations of basic random processes. How-
ever, such techniques remain constrained to specific distributions exhibiting par-
ticular mathematical properties. In practice, standard library implementations
predominantly rely on transformed rejection sampling [22,24], which necessi-
tates explicit probability mass computation. These computations entail multiple
arithmetic operations and specialized function evaluations, including factorial
and logarithm computations, thereby introducing approximation errors at each
step. The accumulation of these errors can significantly impact the statistical
properties of the generated samples, potentially compromising the theoretical
guarantees of algorithms that depend on them.

In this work, we focus on analyzing standard library implementations of
Binomial samplers, which are largely based on transformed rejection sampling
techniques [22,23,24]. These implementations require computation of Binomial
distribution probability mass, denoted by bn,p(k), necessitating approximations
of factorial terms [33], logarithmic computations [9], and various arithmetic op-
erations. While such approximations enable efficient sampling, they introduce
systematic deviations from the ideal Binomial distribution that current imple-
mentations neither quantify nor report to users. These deviations can accumulate
and potentially trigger cascading failures in downstream applications [4,49]. De-
spite the widespread adoption of these libraries, there exists no documentation
providing precise analysis of accumulated errors.

The primary research problem we address is: how to develop a rigorous
methodology to analyze the errors in existing samplers to provide meaningful
measurement of their impact on downstream applications? This question is par-
ticularly pertinent given the increasing reliance on randomized algorithms in
critical applications, where understanding and quantifying sampling errors be-
comes crucial for ensuring system reliability and correctness.

Our first contribution is a rigorous framework for analyzing the quality of
existing samplers through the lens of statistical distance. We advocate statis-
tical distance as a theoretically sound metric for quantifying sampler quality,
owing to its fundamental property of indistinguishability. Let p and q be two
probability distributions with statistical distance at most η, i.e., dTV(p, q) ≤ η.
Then, for any statistical test T (even computationally unbounded), the prob-
ability of distinguishing between samples from p and q is bounded by η. This
fundamental property has profound implications for sampler quality analysis: if a
sampler’s output distribution has a statistical distance η from the ideal distribu-
tion, then the downstream application cannot experience an error greater than
η, regardless of its computational sophistication. Building on this theoretical
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foundation, we present a detailed analysis of state-of-the-art implementations,
deriving concrete bounds on their deviation from the ideal distributions through
careful decomposition of numerical approximation errors. We propose an exten-
sion to sampler interfaces that exposes statistical distance as an input/output
parameter, enabling users to control and monitor the sampling accuracy.

To demonstrate the practical utility of our theoretical framework, we present
a comprehensive case study in the context of DNF model counting. We show
how our quality measures can be integrated into APSEst, a state-of-the-art DNF
counter that relies heavily on Binomial sampling. By incorporating our error
bounds into the APSEst’s analysis framework, we provide the first implementa-
tion that offers both scalability and rigorous error guarantees. This integration
not only enhances the reliability of the counter but also establishes a blueprint for
how sampler quality analysis can be systematically incorporated into broader al-
gorithmic frameworks. Our empirical evaluation demonstrates that this enhanced
implementation maintains the efficiency of existing approaches while providing
substantially stronger theoretical guarantees.

We believe our work highlights a fundamental challenge in randomized com-
putation: the need for rigorous analysis of sampler implementations to establish
precise error bounds and enhance trust in randomized algorithms. While we
have focused on Binomial samplers as a crucial first step, the theoretical frame-
work we develop for analyzing sampling error propagation, combined with our
practical demonstration in DNF counting, establishes a foundation for future
research. A natural direction for future investigation would be the analysis of
other standard distributions such as Poisson, Normal, and Beta distributions,
each presenting its own unique challenges in implementation and error analysis.
Our approach of integrating error analysis into algorithmic frameworks opens
new avenues for developing robust randomized algorithms that maintain both
theoretical guarantees and practical efficiency. This work will likely motivate
the broader community to examine and enhance the reliability of randomized
computation implementations, particularly in the context of standard library
functions that serve as building blocks for numerous algorithms.

Organisation In section 2, we present the necessary preliminaries and an overview
of related concepts that lay the foundation for the rest of the paper. In section 3,
we explore related work on error analysis in computational programs and the
evaluation of sampler quality. Section 4 outlines our proposal for using statisti-
cal distance as a quality metric for samplers, along with the motivation behind
this approach. Section 5 offers a detailed discussion on standard Binomial sam-
plers, including our theoretical results, correctness proofs, and error analysis. In
section 6, we include a case study on using our sampler to count the number
of solutions of a Boolean formula in the Disjunctive Normal Form. Finally, in
section 7, we discuss the limitations of our work and future directions.
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2 Preliminaries

In this work, we are interested in probability distributions over discrete sets and
their samplers. A probability distribution, or simply, a distribution (denoted by
p) on a discrete set Ω is a mapping p : Ω → [0, 1] such that

∑
x∈Ω p(x) = 1. We

define p(A) =
∑

x∈A p(x) for any A ⊆ Ω. A uniform distribution, or uniform
randomness over a set Ω is defined as p(x) = 1

|Ω| for all x ∈ Ω. We use the

notation bn,p to denote the Binomial distribution with parameters n and p,
which is given by bn,p(k) =

(
n
k

)
pk(1− p)n−k for k ∈ [0, n].

Recall that a Turing Machine (TM) is a theoretical model of computation
defined as a tuple (Q,Σ, Γ,⊔, ∆, s0, F ), where Q is a finite set of states, Σ ⊆
Γ \{⊔} is the input alphabet, Γ is the tape alphabet, ⊔ ∈ Γ is the blank symbol,
∆ : Q × Γ → Q × Γ × {L,R} is the transition function, s0 ∈ Q is the initial
state, and F ⊆ Q is the set of final states [21]. A natural extension of a Turing
Machine is a Turing Transducer [34], which, in addition to the input and work
tapes, has a separate write-only output tape. A Transducer computes a function
f : {0, 1}∗ → {0, 1}∗, and the output is the content of the output tape when
the machine halts. A Probabilistic Turing Machine (PTM) is a Turing Machine
that, in addition to the input tape, has access to a read-only random tape filled
with an infinite sequence of random bits [1]. On a given input x ∈ {0, 1}∗ and for
each fixed random string u ∈ {0, 1}∞, the machine’s behavior is deterministic.
A probabilistic Transducer is defined analogously as a PTM equipped with an
output tape. It computes an output string M(x;u) for each fixed u, and writes
it on the output tape.

A randomized algorithmA is modeled as a probabilistic Transducer. On input
x and a source of randomness, the output of the algorithm A(x;u) is written
on the output tape of the corresponding Transducer. Consequently, A defines
a distribution over outputs depending on the randomness. While this definition
assumes that the random bits are drawn from the uniform distribution, we allow
randomized algorithms to access randomness from arbitrary distributions. The
ability to sample from arbitrary distributions is without loss of generality, since
any distribution can be simulated using uniformly random bits. An example of
a randomized algoithm is a sampler Sampp for a distribution p. Given a source
of uniform randomness u, the sampler outputs a sample from p, that is, for
all x ∈ Ω, Pru(Sampp outputs x) = p(x). Conversely, a sampler induces an
associated probability distribution p from which it draws samples.

2.1 Approximating Factorials

Lanczos Approximation [33] is a widely used method to approximate the facto-
rials with remarkable accuracy. For a fixed value of t, g, and a positive integer
n ≥ 1, the Lanczos approximation of n!, denoted by FactLancz(n), is defined as,

FactLancz(n) =
√
2π

(
n+ g + 1

2

)n+ 1
2 e−(n+g+ 1

2 )At,g(n). The polynomial At,g(n)
contains t terms. The accuracy of the approximation depends on the number of
terms t in its expansion, as well as on the constant g. Here g is any real constant
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such that g+ 1
2 > 0. The parameters g and t affect the accuracy and convergence

rate of the Lanczos approximation, where larger t improves accuracy at the cost
of higher computational resources.

In the Lanczos approximation, a uniform error bound [41] can be established,
which provides a measure of how closely the Lanczos approximation approxi-
mates the factorial function for all relevant inputs. Given t, g the uniform error

bound ζt,g of the approximation is defined by, ζt,g = supn∈N

∣∣∣n!− FactLancz(n)
∣∣∣.

Let ζ =
√

π
e · |ζt,g|. The relative error can be bounded as follows [41],

|n!− FactLancz(n)|
n!

≤ ζ (1)

2.2 Multiple-precision Arithmetic

Given a working precision β > 0, the set of all definable numbers in this context
is expressed as F =

{
w · 2e : 1

2 ≤ |w| ≤ 1 and e ∈ Z
}

[48,38,27]. Here e is an
integer denoting the exponent, and the ulp(x) = 2e−β , where ulp denotes the
unit in the last place [48]. Let rnd : R→ F be the rounding function that rounds
a real number to the nearest definable number. The corresponding relative errors

are bounded by |rnd(x)−x|
|x| ≤ ε, for x ̸= 0, where ε = 1

2β
, is referred to as the unit

round-off [48,38,27].
We define a set of operations by basic operations for which it is possible to

directly compute the correct rounding of the result [17]. These operations are
{+,−,×, /,√}. For any two numbers x, y ∈ R, the following bound holds:

|(rnd(x)⊛ rnd(y))− (x ∗ y)| ≤ ε · |x ∗ y| (2)

where ∗ ∈ {+,−,×, /}, and, ⊛ is the corresponding operation in F. Same bound
holds for

√
x [27]. For n real numbers x1, x2, . . . , xn, the computed sum ŝ :=

rnd(x1)⊕rnd(x2)⊕. . .⊕rnd(xn), regardless of the order of computation, deviates
from the exact sum s =

∑n
i=1 xi by at most following bound [27],

|ŝ− s| ≤ nε

n∑
i=1

|xi| (3)

The basic operations are the building blocks for other advanced operations,
such as logarithms, exponentials, and trigonometric functions.

2.3 Approximate Computation of Logarithm

Logarithm computation is generally approximated using the Taylor series. How-
ever, for high precision, arithmetic-geometric-mean (AGM) [9] is used. Let us
consider two sequences {wn}, {zn} of positive real numbers such that, wn+1 =
wn+zn

2 , zn+1 =
√
wn · zn. These two sequences converge to the common limit and

are denoted by AGM(w0, z0).
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For x ∈ F represented as x = w · 2e, we define the function exponent(x) = e.
To compute log(x) using the AGM method, an integer m is computed such
that x2m > 2β/2. The algorithm then evaluates AGM(1, 4/s) and computes the
logarithm as

Log(x) =
π

2AGM(1, 4/s)
−m log 2

In the MPFR library [48], the value of m is fixed as m =
⌈
β+3
2

⌉
− exponent(x).

This choice of m ensures that s = x2m lies within the range [2β/2, 2β ]. The
following lemma provides an error bound for the AGM method.

Lemma 1 (Prop. 2 of [9]). For the function AGM , the following holds for

any s ≥ 4:
∣∣∣ π
2AGM(1,4/s) − log (s)

∣∣∣ ≤ 64
s2 (10 + | log s|).

Let Log be the function that computes the logarithm using the AGM method.
Since, for β > 8, we have 3 log(s) > 10 and 2β/2 ≤ s ≤ 2β , we make the following
conclusion:

|Log(x)− log(x)| ≤ 178β

2β
(4)

We will use the notation τ = 178β
2β

as the additive error bound for the log-
arithm approximation in the rest of the paper. Note that, τ = O(ε). A similar
error bound can be derived for the Taylor series method as well [7,8].

Evaluating the logarithm of the factorial, rather than the factorial itself, is
the standard technique. The function LogFactorial computes the logarithm of the
factorial using the Lanczos approximation with fixed parameters t and g.

LogFactorial(k) =
1

2
Log(2π) +

(
k +

1

2

)
Log

(
k + g +

1

2

)
−

(
k + g +

1

2

)
+ Log (At,g(k)) (5)

3 Related Work

The impact of computational approximations has been a longstanding concern
in the literature. Considerable effort has been devoted to designing samplers that
generate samples with arbitrary precision and provably no deviation from the
original distribution, a concept referred to as exact sampling. This line of work
dates back to Von Neumann and has been further developed in studies such as
[29], which propose arbitrarily precise algorithms for sampling from distributions
like the normal and exponential. The core idea involves employing a random
process that efficiently generates a sample x with probability e−x. Remarkably,
this algorithm achieves an expected runtime of O(1).

Similarly, significant attention has been given to designing exact Binomial
samplers [14,16] as well. The approach in [14] employs the geometric distribution
to generate Binomial samples but requires O(np) time. More recent advances by
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[16] achieve O(√n) time complexity. Their approach involves efficiently accessing
bn,1/2 and leveraging its samples, combined with the binary representation of p,
to generate samples from bn,p.

Constant time sampling algorithms for binomial distributions are categorized
under the framework of transformed rejection sampling [15,44,22,28]. These al-
gorithms achieve a sampling time complexity of O(1), but at the cost of approx-
imations. This is because the framework needs to evaluate the probability mass
function, which is computationally expensive unless approximated.

The impact of numerical accuracy on computational programs has been ex-
tensively studied. Significant research has been conducted to analyze errors in
arithmetic operations [10,26,25,27,43]. Recently, [5] and [8] have explored how
these errors affect the performance of functions such as log-sum-exp and softmax.
These studies underscore the critical need to account for the inherent numerical
errors when designing algorithms and assessing their practical performance.

Finally, statistical distance has been widely recognized as a key measure
of sampler quality. For instance, a series of works [12,35,40,39,2,32,3] focus on
designing tests to determine the quality of samplers in terms of the statistical
distance between the sampler and the target distribution.

4 Statistical Distance as Quality Metric

Since exact sampling from distributions such as Binomial is computationally
expensive for most parameters of interest, the standard libraries rely on approx-
imations to achieve practical efficiency. While these approximations significantly
reduce time complexity, they introduce deviation from the actual distribution,
effectively causing the samples to come from a distribution different from the
intended one. Therefore, we need to focus on a fundamental question: how do
we make systems that rely on samplers trustworthy?

Simply ignoring these deviations is not advisable, as they can have cascading
effects that compromise the correctness of the entire system. Often, a user designs
a randomized algorithm A to solve a particular problem, with an upper bound
δ on its failure probability. If A relies on a standard Binomial sampler without
knowledge of the sampler’s quality, the program may experience a higher failure
rate due to approximations in the underlying samplers.

Our proposal immediately raises the question: how should one measure the
quality of the sampler? To this end, we first focus on the fact that the objective
of the measurement of quality is to allow the end user to quantify the impact
of the usage of the sampler. There are several metrics, such as KL-divergence,
statistical distance, and Hellinger distance, that have been proposed in the lit-
erature focused on probability distributions that seek to quantify the distance
between two probability distributions. In this regard, a natural question is to
ask what distance metric we should choose. To this end, we propose the usage
of statistical distance (Definition 1) as the metric to report the quality.
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Definition 1 (Statistical Distance). Suppose two distributions p, q are de-
fined over the set Ω. The Statistical Distance (denoted by dTV) between p and q
is defined by, dTV(p, q) =

1
2

∑
x∈Ω |p(x)− q(x)| = supA⊆Ω p(A)− q(A).

Our proposal for statistical distance stems from its ability to allow end users
to derive the worst-case bounds on the behavior of the system in a black-box
manner. Formally, this follows from the folklore lemma below, for which we
provide a proof for completeness.

Lemma 2. Let A be a randomized algorithm that uses randomness from a
source distribution p, and let Bad be an event in the output of A. If p is re-
placed by another distribution q, then the probability of the event Bad is bounded
by the statistical distance between:∣∣∣∣Prr∼p

(A(x; r) ∈ Bad)− Pr
r∼q

(A(x; r) ∈ Bad)

∣∣∣∣ ≤ dTV(p, q)

Proof. Let B ⊆ Ω be the set of random strings (or, numbers) that trigger the

event Bad. Then, we have

∣∣∣∣Prr∼p
(A(x; r) ∈ Bad)− Pr

r∼q
(A(x; r) ∈ Bad)

∣∣∣∣ = |p(B) −
q(B)|. Using the definition of statistical distance (definition 1), |p(B)− q(B)| ≤
supA⊆Ω p(A)− q(A) = dTV(p, q). ⊓⊔

Note that the lemma above imposes no restrictions on A or the event Bad,
highlighting the power of statistical distance as a metric. In particular, if dTV(p, q)
is small, then the end user can be confident in bounding the overall impact on
the program. We give a general recipe of how to incorporate statistical distance
in the implementation of randomized algorithms.

4.1 Integrating Statistical Distance Analysis in Applications

The correctness of randomized algorithms typically relies on access to exact sam-
ples from a target distribution p. However, in practice, algorithms must use sam-
plers that draw from an approximate distribution q, potentially compromising
their theoretical guarantees. We propose a systematic framework for incorpo-
rating these approximations while maintaining rigorous error bounds through
minimal modifications to existing algorithms and their analyses.

Algorithm Modification Let A be a randomized algorithm that requires samples
from distribution p. We modify A to explicitly track and bound the accumulated
error from using an approximate sampler as follows:

1. Introduce an error budget parameter δ1 representing the maximum allowable
error due to sampling approximations.

2. Initialize an error accumulator δ′ to track the statistical distance:

δ′ ← 0.
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3. For each sampler invocation, update the accumulated error:

δ′ ← δ′ + dTV(p, q)

where dTV(p, q) is the pre-computed statistical distance bound.
4. If δ′ exceeds the budget (δ′ > δ1), abort execution.

Analysis Modification Let δ2 denote the original error probability of algorithm
A assuming access to exact samples from p. After incorporating the sampling
approximation error δ1, the total error probability δ is bounded by:

δ ≤ δ1 + δ2

This framework maintains theoretical guarantees while transparently ac-
counting for sampling approximations. The modifications are minimal and the
analysis remains straightforward. We demonstrate an end-to-end integration of
this approach through a case study in section 6.

An alternative approach would be to directly analyze algorithm A with re-
spect to the approximate distribution q. However, this presents several chal-
lenges. The target distribution p often possesses mathematically convenient
properties that facilitate analysis, while the implementation-specific q may lack
such properties, making direct analysis intractable. Furthermore, updates to the
underlying sampler implementation would inevitably necessitate re-analysis of
every dependent algorithm.

Our framework enables separation of concerns: algorithm designers can con-
duct analysis assuming access to the idealized distribution p, while library devel-
opers focus on bounding the statistical distance between p and their implemen-
tation q. The errors can then be composed as shown above, providing rigorous
bounds with minimal modification to existing analyses.

4.2 Proposal for Extending Sampler Interfaces

To enable seamless integration of our statistical distance framework, we propose
extending the interface of existing samplers by incorporating two new compo-
nents (see fig. 1): (1) an input parameter δin that allows users to specify the
maximum allowable statistical distance from the ideal distribution, and (2) an
output parameter δout that reports the actual statistical distance achieved during
sampling. These additions give users fine-grained control over the sampler. By
setting δin, users can explicitly define their tolerance for the statistical distance,
while δout enables real-time monitoring of the sampler’s performance. The fine-
grained control offered by our interface allows users to make informed decisions
about the trade-off between accuracy and performance.

5 Analysis of Standard Binomial Samplers

This section examines standard Binomial sampling algorithms and their inherent
errors. We first present the standard Binomial sampling algorithm and then
analyze the bounds on the statistical distance between the actual distribution
and the distribution from which the sampler draws the samples.
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def BinSamp(n, p):

"""

Input: n, p

Output: sample

"""

...

def BinSamp(n, p, delta_in):

"""

Input: n, p, delta_in

Output: sample, delta_out

"""

...

Fig. 1: Early (left) and new (right) sampler interfaces. The new version includes
statistical distance control via delta in and delta out.

5.1 Standard Binomial Sampling Algorithms

This section describes the standard Binomial sampling algorithms commonly
used in practice, with particular attention given to Python’s implementation.
These samplers rely on the method of transformed rejection sampling which
combines two well-established sampling techniques: (1) inverse transform sam-
pling and (2) rejection sampling. Rejection sampling requires existence of an,
easy to sample from, hat distribution h such that for all k ∈ [n], bn,p(k) < αh(k)
for some α > 0, known as rejection rate. Inverse transform sampling generates
samples from h. Suppose the cumulative distribution of h is denoted by H. Be-
cause H is a cumulative distribution therefore, its inverse H−1 is well defined.
To get a sample from h, a uniform random variable u is generated, and corre-
spondingly the sample k = ⌊H−1(u)⌋ is computed. From the principles of inverse
transform sampling, we can show that k ∼ h. The next step involves rejection
sampling. After generating k, another uniform random sample v is generated

from [0, 1]. The sample is rejected if v >
bn,p(k)
αh(k) , else k is returned.

Among the various Binomial sampling algorithms, the choice of the (inverse)
hat distribution H−1(u) is a key difference. For example, Hörmann [22] consid-
ered the following definitions of hat distribution3 for −0.5 ≤ u ≤ 0.5, which has
high acceptance probabilities for Binomial distributions over varied n, p.

H−1(u) =

(
2λn,p

(1/2− |u|) + µn,p

)
u+ νn,p, h−1(u) =

λn,p

(1/2− |u|)2 + µn,p

The parameters λn,p, µn,p, νn,p depend on the parameters of Binomial dis-
tribution n, p. Specifically, in Hörmann’s algorithm, the corresponding parame-
ters were chosen to be: λn,p = −0.05878 + 0.062744

√
np(1− p) + 0.01p, µn,p =

1.15+2.53
√
np(1− p), νn,p = np+0.5. Importantly, our results are not restricted

to any specific choice of hat distribution. Instead, we consider any arbitrary hat
distribution h and its inverse H−1 that satisfy the conditions of transformed re-
jection sampling and involve a constant number of basic arithmetic operations.
Therefore, for simplicity and readability, we omit the explicit details of H and h

3 Since (H−1)′(u) = 1
h(k)

, we use the notation h−1(u) = 1
h(k)

directly for simplicity.
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in the rest of the paper. We will refer to H−1 as the ‘inverse function’ and h as
the ‘hat function’ or ‘hat distribution’.

The expected runtime of these algorithms is proportional to the rejection
rate α, and therefore, the runtime is independent of the parameters of the dis-

tribution. These algorithms require computing the rejection ratio rk =
bn,p(k)
αh(k) .

But computing this ratio, especially evaluating bn,p(k) exactly, can be as ex-
pensive as exponential in the number of bits. Therefore, an easily computable
approximation r̃k is often obtained to achieve fast scalable practical algorithms.
Usually, due to scalability purposes, the logarithm of the rejection ratio log rk
is computed rather than directly computing rk, which again suffers from other
approximation errors due to log computation. Therefore, these algorithms lack
sampling exactly from the distribution.

Python implementation of Binomial Sampler Standard implementations
of Binomial samplers, such as those available in libraries like the GNU Scientific
Library (GSL) [18], are designed to work with 64-bit floating-point numbers.
Similarly, Python’s standard libraries and NumPy [19], provide an implementa-
tion of Hörmann’s algorithm for up to the 64-bit floating-point range. Notably,
starting from Python version 3.12, this algorithm has also been integrated into
the standard random library of Python, offering support for higher precision
computations (though still constrained by the arithmetic computational limits
of Python’s standard library).

Algorithm 1 presents an abstraction of the standard implementation Bino-
mial Sampler. Consistent with the current Python implementation, we assume
that the BinSamp algorithm uses the Lanczos approximation to compute the
logarithm of the factorial function. To employ the Lanczos approximation, the
algorithm uses LogFactorial as described in eq. (5). This is one of the most
widely used implementations of the Binomial sampling algorithm in practice.
We adopt it as a benchmark for developing our error bounds. For clarity, we
denote the distribution generated by Python’s standard library implementation
of Algorithm 1 as bBinSamp

n,p , as opposed to the notation bn,p, which refers to the
Binomial distribution with parameters n, p.

5.2 Our Findings

We begin by stating the main theorem of our paper, followed by the supporting
lemmas that are used to establish the theorem.

Theorem 1. Let the precision of the context be β ≥ max(2⌈log2 n⌉, ⌈− log2 p⌉),
and let bBinSamp

n,p denote the distribution from which BinSamp samples are drawn.

The statistical distance between bBinSamp
n,p and bn,p is given by:

dTV
(
bn,p, b

BinSamp
n,p

)
≤ (1110β + 3cp+ c+ αc)nε+ 15ζ + o(ε)

Where c is a constant determined by the inverse function pair (H, h), α is the
rejection rate, ζ denotes the uniform error bound due to the Lanczos’s approx-
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Algorithm 1: BinSamp(n, p)

Input : Parameters n, p
Output: Sample k

1 Initialize inverse-function-pair (H, h)
2 Initialize rejection parameter α
3 ln ← LogFactorial(n)
4 while True do
5 v ← uniform random samples within [0, 1]
6 u← uniform random samples within [−0.5, 0.5]
7 k ← ⌊H−1(u)⌋
8 lk ← LogFactorial(k), lnk ← LogFactorial(n− k)
9 lv ← ln⊖ lk⊖ lnk⊕k⊗Log(p)⊕ (n−k)⊗Log(1−p)⊕Log(h−1(u))⊖Log(α)

10 if Log(v) ≤ lv then
11 return k

imation, ε represents the unit round off error 1
2β
, and o(ε) denotes the higher

order terms in ε.

The sources of deviations are categorized into two types of errors: (1) E1,
which arises from errors in transformed rejection sampling caused by inaccuracies
in the computation of ⌊H−1(u)⌋ in line 7 of Algorithm 1; and (2) E2, which refers
to errors in the computation of the rejection ratio, accumulating throughout
lines 3, 8, and 9 of Algorithm 1. We will bound the effects of these two errors
independently and then combine them to get our main theorem.

Analysis of E1: The error E1 arises from inaccuracies in the inverse transform
sampling, specifically due to deviations in the hat distribution h caused by ba-
sic arithmetic operations. The key challenge stems from the inverse sampling
procedure evaluating H−1(u) for a uniform random sample u. Since evaluating
H−1(u) requires basic arithmetic operations, the inverse sampling component
may produce an incorrect output k′, different from the intended value k ̸= k′

and thereby deviating h into a modified distribution h̃.
For β > 2 log2⌈n⌉, we show that the possible values of k′ are limited to

{k − 1, k, k + 1}. Through careful analysis of the probabilities of k′ being k − 1
or k + 1, we show that these probabilities are bounded by O(kε). This leads to
the bound on h̃(k) which is stated in the following lemma:

Lemma 3. Suppose h̃ is the deviated version of the hat distribution h due to the
error in the computation of H−1(u). Then, if the error is distributed uniformly
over the range [−εH, εH] and εH ≤ 1

2 , then for any k ∈ [n], (1−εH(3k+1))h(k) ≤
h̃(k) ≤ (1 + wkεH(k + 2))h(k) where, wk = max

(
h(k−1)
h(k) , h(k+1)

h(k)

)
Analysis of E2: The error E2 stems from inaccuracies in the rejection ratio
computation, which are influenced by factorial approximations, basic arithmetic
operations, and log computation approximations. Specifically, the rejection ratio
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error originates from three primary sources: (1) errors introduced by factorial ap-
proximations, (2) errors and approximations in basic arithmetic operations and
log computation during the rejection ratio computation. Both of these errors
contribute to the error in the rejection ratio computation. The computed rejec-

tion ratio in line 9 of Algorithm 1 is denoted as r̃k, specifically, r̃k =
bBinSamp
n,p (k)

αh(k) .

Since Python’s standard library uses the Lanczos approximation for log com-
putations, we bound the relative error of factorial approximation using the corre-
sponding error bound of the Lanczos approximation (see section 2.1 for details).
To bound E2, we also need to understand the relative error in basic arithmetic
operations and additive error bounds for logarithm approximations (see sec-
tion 2.2 for details). By combining these error bounds, we establish a relative
error bound for the rejection ratio, formalized in the following lemma.

Lemma 4. Let rk denote the actual rejection ratio, defined as rk =
bn,p(k)
αh(k) , and

let r̃k denote the computed rejection ratio, defined as r̃k =
bBinSamp
n,p (k)

αh(k) , for any k

in [n]. Then, for any k ∈ [0, n], we have:∣∣∣∣ r̃krk − 1

∣∣∣∣ ≤ (1110n+ 2540)βε+ 14ε log (h(k)) + 15ζ + o(ε)

By combining the error bounds from both the rejection ratio computation and
hat distribution deviation, we obtain the final bound on the statistical distance,
as stated in Theorem 1.

5.3 Detailed Technical Analysis

We start by proving the main theorem of our paper using Lemma 3 and Lemma 4.

Proof (of theorem 1). Without loss of generality, assume h(−1) = h(n + 1) =
bn,p(−1) = bn,p(n+ 1) = 0 and r−1 = rn+1 = 1. Let us define the event accept
as the event such that a sample k is sampled by the sampler. In BinSamp a
sample drawn from h̃ is accepted with probability r̃k. Therefore, the acceptance
probability is given by, Pr(accept) =

∑n
k=0 Pr(accept|k) Pr(k) =

∑n
k=0 r̃kh̃(k).

Substituing the lower bounds for r̃k, h̃(k) from Lemma 4 and Lemma 3 we get:

Pr(accept) ≥
n∑

k=0

(1− (1110n+ 2540)βε− 14ε log
(
h−1(u)

)
− 15ζ − o(ε))

(1− (3k + 1)εH)rkh(k)

≥
n∑

k=0

(1− (1110n+ 2540)βε− 14ε log
(
h−1(u)

)
− 15ζ − o(ε))

(1− (3k + 1)εH)
bn,p(k)

α

13



To complete the lower bound we first observe that,

n∑
k=0

log(h−1(u))bn,p(k) =
n∑

k=0

log

(
bn,p(k)

h(k)

)
bn,p(k)−

n∑
k=0

log(bn,p(k))bn,p(k).

Given that
bn,p(k)
h(k) ≤ α for all k, and that the entropy of Binomial distribution

satisfies E[− log(bn,p(k))] ≤ 1
2 log2(2πenp(1− p)), we conclude that

n∑
k=0

log(h−1(u))bn,p(k) ≤ α+
1

2
log2(2πenp(1− p)).

Thus we can lower bound acceptance probability Pr(accept) as follows,

Pr(accept) ≥
(
1− (1110n+ 2554)βε− 14αε+ log

(
h−1(u)

)
− 15ζ

−(3np+ 1)εH − o(ε)) · 1
α

Therefore, the probability of observing a point k under the sampler’s output
distribution is given by bBinSamp

n,p (k) = Pr(k|accept). Applying Bayes’ rule we get,

bBinSamp
n,p (k) = Pr(accept|k) Pr(k)

Pr(accept) = r̃k h̃(k)
Pr(accept) . By using the upper bound of r̃k, from

Lemma 4,

bBinSamp
n,p (k) ≤ 1 + (1110n+ 2540)βε+ 14ε log

(
h−1(u)

)
+ 15ζ + o(ε)

1− (1110n+ 2554)βε− 15ζ − (3np+ 1)εH − o(ε)
· αrkh̃(k)

≤ (1 + (2220n+ 5080)βε+ 28ε log
(
h−1(u)

)
+ 30ζ

+ (6np+ 2)εH + o(ε)) · bn,p(k)h̃(k)
h(k)

The last inequality follows from assuming (1110n + 2540)βε + (3np + 1)εH +

14ε log
(
h−1(u)

)
+15ζ+ o(ε) ≤ 1

2 . Next we bound the ratio h̃(k)
h(k) using Lemma 3,

bBinSamp
n,p (k) ≤

(
1 + (2220n+ 5080)βε+ 28ε log

(
h−1(u)

)
+ 30ζ

+ (6np+ 2)εH + o(ε)
)
· (1 + wkεH(k + 2)) · bn,p(k)

≤
(
1 + (2220n+ 5080)βε+ 28ε log

(
h−1(u)

)
+ 30ζ + (6np+ 2)εH+

wkεH(k + 2) + o(ε)
)
· bn,p(k)

Where wk = max
(

h(k−1)
h(k) , h(k+1)

h(k)

)
. Since rk ≤ 1, it follows that h(k) ≥ bn,p(k)

α

and h(k + 1) =
bn,p(k+1)
αrk+1

. This implies h(k+1)
h(k) ≤

bn,p(k+1)
bn,p(k)rk+1

. Similarly, we have
h(k−1)
h(k) ≤

bn,p(k−1)
bn,p(k)rk−1

. Combining these, wk can be upper bounded as follows,

wk = max

(
h(k − 1)

h(k)
,
h(k + 1)

h(k)

)
≤ max

(
bn,p(k − 1)

bn,p(k)rk−1
,
bn,p(k + 1)

bn,p(k)rk+1

)

14



This yields the following bound: wkbn,p(k) ≤ max
(

bn,p(k−1)
rk−1

,
bn,p(k+1)

rk+1

)
. Thus,

wkbn,p(k) ≤ max (h(k − 1), h(k + 1)) ≤ h(k − 1) + h(k + 1). Using this bound,
we can upper bound the sum

∑n
k=0 wkεH(k + 2)bn,p(k) as follows,

n∑
k=0

wkεH(k + 2)bn,p(k) ≤ αεH

n∑
k=0

(k + 2) (h(k − 1) + h(k + 1))

≤ 2αεH(n+ 2)

The last inequality follows from the fact that k ≤ n,
∑n−1

i=0 h(i) ≤ 1 and∑n
i=1 h(i) ≤ 1. Therefore, the statistical distance between the sampler’s dis-

tribution and the Binomial distribution is given by,

dTV(b
BinSamp
n,p , bn,p) =

1

2

n∑
k=0

∣∣bBinSamp
n,p (k)− bn,p(k)

∣∣
≤1

2

n∑
k=0

∣∣(2220n+ 5080)βε+ 28ε log
(
h−1(u)

)
+ 30ζ + (6np+ 2)εH

+2αεH(n+ 2) + o(ε)| · bn,p(k)
≤(1110n+ 2554)βε+ 14αε+ 15ζ + (3np+ 1)εH + αεH(n+ 2) + o(ε)

=(1110β + 3cp+ c+ αc)nε+ 15ζ + o(ε)

This completes the proof. ⊓⊔

Error in Inverse Transform Sampling In this subsection, we analyze the
error introduced during the inverse transform sampling process which arises
from the arithmetic operations involved in evaluating the inverse hat function
H−1(u). Instead of assuming a specific hat distribution, we argue that for any
hat distribution, the multiplicative error introduced during the computation of
H−1(u) is multiplicatively bounded by εH := cε, where c > 0 depends on the
number of basic arithmetic operations4 ∗ used in H−1 with ∗ ∈ {+,−,×, /,√}.
Consequently, the computed value of H−1(u) in line 7 of BinSamp falls within
the range [(1 − εH)H−1(u), (1 + εH)H−1(u)]. To model the impact of the er-
ror we assume it to be uniformly distributed over the range [−εH, εH]. While
a Gaussian distribution might seem like a natural choice for such errors, the
uniform distribution offers a more conservative approach. Among all zero-mean
Gaussian like distributions with bounded support, the uniform distribution has
the heaviest tails within its support. This characteristic makes it suitable for
handling errors in the worst-case scenario. In particular, if the mean of the error
is centered at H−1(u), then assuming a uniform distribution for the error allows
us to upper bound deviations in h(k) more conservatively. This ensures that our
bounds remain valid even under pessimistic error assumptions. We restate the
Lemma 3 for completness and provide its proof in the full version.

4 For most practical hat functions, we typically have c ≤ 100, which implies that
εH ≤ 1

2
when the precision parameter β > 8.
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Lemma 3. Suppose h̃ is the deviated version of the hat distribution h due to the
error in the computation of H−1(u). Then, if the error is distributed uniformly
over the range [−εH, εH] and εH ≤ 1

2 , then for any k ∈ [n], (1−εH(3k+1))h(k) ≤
h̃(k) ≤ (1 + wkεH(k + 2))h(k) where, wk = max

(
h(k−1)
h(k) , h(k+1)

h(k)

)
Error in Rejection Ratio Computation In this subsection, we will analyze
the impact of factorial approximations, basic arithmetic operations, and log com-
putation approximations on the rejection sampling process. Before proceeding
further, we introduce the notation bIntern,p , which we refer to it as the intermediate
distribution, where only the factorial computations are approximated. The key
result of this subsection is Lemma 4, whose proof builds on two auxiliary lem-
mas: one addressing errors from arithmetic and log approximations, and another
handling factorial approximation. Proofs are deferred to the full version due to
space constraints.

Lemma 5. Let rInterk denotes the ratio rInterk =
bIntern,p(k)

αh(k) , and let r̃k denote the

computed rejection ratio, defined as r̃k =
bBinSamp
n,p (k)

αh(k) , for any k in [n]. Then, for

all k ∈ [n],
∣∣∣ r̃k
rInterk

− 1
∣∣∣ ≤ (1110n+ 2540)βε+ 14ε log (h(k)) + o(ε)

Lemma 6. For all k ∈ [n], (1−15ζ)bn,p(k) ≤ bIntern,p (k) ≤ (1+15ζ)bn,p(k), where

ζ denotes the uniform error bound due to the Lanczos approximation and bIntern,p

denotes the intermediate distribution.

For completeness, we restate the Lemma 4 whose proof follows by combining
Lemma 5 and Lemma 6.

Lemma 4. Let rk denote the actual rejection ratio, defined as rk =
bn,p(k)
αh(k) , and

let r̃k denote the computed rejection ratio, defined as r̃k =
bBinSamp
n,p (k)

αh(k) , for any k

in [n]. Then, for any k ∈ [0, n], we have:∣∣∣∣ r̃krk − 1

∣∣∣∣ ≤ (1110n+ 2540)βε+ 14ε log (h(k)) + 15ζ + o(ε)

6 Case Study: DNF Counting

This case study demonstrates how our proposed bounds on the statistical dis-
tance between the sampler and the Binomial distribution can be easily integrated
into practical tools. To demonstrate the applicability of these bounds, we utilize
them in conjunction with an off-the-shelf Binomial sampler to implement the
DNF Counting algorithm APSEst [37].

A DNF formula is a disjunction of conjunctions of literals, where each con-
junction (clause) represents a set of conditions. For example, (x1 ∧ ¬x2) ∨

16



(x2 ∧ ¬x3) is a DNF formula with clauses like (x1 ∧ ¬x2). A DNF formula
φ := φ1 ∨ . . . ∨ φm has m clauses, and the number of its solutions is denoted as
|sol(φ)|. The problem of counting the |sol(φ)| for a DNF formula φ is #P-hard.
To address this challenge, various Fully Polynomial-Time Randomized Approxi-
mation Schemes (FPRAS) have been developed [30,31,13]. Given a DNF formula
φ and tolerance and confidence parameters ε, δ ∈ [0, 1], these FPRAS return
n̂ ∈ [(1− ε)|sol(φ)|, (1 + ε)|sol(φ)|] with probability at least (1− δ).

The most recent progress in sampling-based DNF counting FPRAS is embod-
ied by the algorithm APSEst [37]. Given a DNF formula φ, the APSEst returns an
ε multiplicative approximation of |sol(φ)| with high probability. The algorithm
maintains a bucket X to keep sampled solutions from DNF clauses and, also, a
probability parameter p such that, for any solution σ of φ, σ belongs to X with
probability p. To achieve this goal, the algorithm removes all the elements σ
from bucket X if σ satisfies φi. The algorithm next samples new solutions from
φi. To determine the number of solutions, the APSEst asks for a sample Ni from
Binomial distribution b|sol(φi)|,p and adds Ni many new satisfying assignments
of φi to X . If the bucket overflows, the algorithm keeps on removing elements
uniformly from the bucket until the bucket size falls under the threshold. The

end goal of APSEst is to output the ratio |X |
p which is a good estimate of |sol(φ)|.

Since APSEst heavily relies on the Binomial sampler, the theoretical guar-
antees of APSEst are contingent on the quality of the Binomial sampler. This
case study illustrates how our results allow users to maintain the theoretical
guarantees of APSEst. Computing bounds on dTV between the Binomial distri-
bution and the sampler, users can adjust the confidence parameter δ in APSEst

to account for errors from the underlying Binomial sampler, thereby ensuring
correctness with theoretical guarantees.

Algorithm Modification We demonstrate how easily the APSEst algorithm
can be modified to incorporate our statistical distance bounds. We denote this
modified version as APSEst2, detailed in algorithm 2, with highlighted modifica-
tions. The primary difference between APSEst and APSEst2 lies in handling the
confidence parameter δ to account for the errors due to the underlying binomial
sampler. Therefore, APSEst2 takes another parameter κ ∈ [0, 1] to adjust the
error budget for the sampler, such that, κδ is the error budget for the sampler
and (1− κ)δ is the error budget for the algorithm. If the accumulated error due
to the sampler exceeds the error budget, APSEst2 halts immediately and returns
Fail. The user can restart the algorithm using a larger value of κ to accommodate
an increased error budget.

Analysis Modification We now illustrate how simply the analysis of APSEst

can be modified to APSEst2. Recall that we are concerned with the event: |X |
p /∈

(1 ± ε)|sol(φ)|, which we will refer to as Bad. Note that, δ1 = κδ is the error
budget for the sampler and δ2 = (1− κ)δ is the error budget for the algorithm.
By the correctness guarantee of APSEst, Prbn,p

(Bad) ≤ δ2. During the execution
of APSEst2, if the algorithm invokes the sampler t times with parameters ni, pi,
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Algorithm 2: APSEst2(φ, ε, δ, κ)
(The modifications from APSEst to APSEst2 are highlighted)

1 δ1 ← κδ

2 δ2 ← (1− κ)δ

3 Initialize T ←
(

log(4/δ2)+logm

ε2

)
4 Initialize p← 1, X ← ∅
5 δ′ ← 0
6 for i = 1 to m do
7 for all σ ∈ X do
8 if σ ⊨ φi then
9 remove σ from X

10 Ni ← BinSamp(|sol(φi)|, p)
11 δ′ ← δ′ + δi|sol(φi)|,p

12 if δ′ > δ1 then

13 return Fail
14 Add Ni distinct random solutions of ϕi to X
15 while |X | > T do
16 p = p/2
17 Throw away each element of X with probability 1

2

18 Output |X|
p

then from Lemma 2, we have

Pr
bBinSamp
n,p

(Bad) ≤ Pr
bn,p

(Bad) +
t∑

i=1

dTV(bni,pi
, bBinSamp

ni,pi
)

Suppose during the execution, the computed dTV bounds using Theorem 1 are
given by δ1n1,p1

, δ2n2,p2
, . . . , δtnt,pt

such that δ′ =
∑t

i=1 δ
i
ni,pi

. Therefore, if APSEst2

does not halt then PrbBinSamp
n,p

(Bad) ≤ Prbn,p
(Bad) +

∑t
i=1 dTV(bn,p, b

BinSamp
n,p ) ≤

δ2 + δ′ ≤ δ2 + δ1 ≤ δ. Thus, by the correctness of APSEst the count returned
by APSEst2 is within the ε error bound. If APSEst2 halts and returns Fail, this
implies that the error budget of the sampler has been exceeded.

6.1 Experimental Setup and Evaluation Results

We conducted accuracy experiments following the methodology of [46] to assess
the reliability of the counts returned by APSEst2. Specifically, we compared the
counts from APSEst2 with those from Ganak [45], an exact counting tool. We
used a comprehensive benchmark suite from [46] to evaluate the performance
and accuracy of the algorithms. This suite consists of DNF formulas with the
number of variables ranging from 100 to 700 and clause counts ranging from
30 to 700. Following prior work [46,36,47], we adopted the standard settings
for the tolerance parameter (ε = 0.8) and the confidence parameter (δ = 0.36),
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Fig. 2: Accuracy experiment results for APSEst2. The red line represents the
tolerance factor (ε = 0.8).

which are commonly used in both model counting competitions and practical
applications. Finally, we set κ to 0.5.

Summary of Results Our observations reveal that APSEst2 delivers counts that
are nearly as precise as the exact counts obtained from Ganak, as demonstrated
in fig. 2. The y-axis of fig. 2 represents the relative error of the counts, with the
tolerance parameter (ε = 0.8) marked by a red straight line, while the x-axis
represents the instances. We observed that for all instances, APSEst2 computed
counts within the tolerance, demonstrating high accuracy.

Figure 3 presents the reported errors δ′ of the Binomial sampler during the
execution of APSEst2. The left plot presents the reported errors for individual
instances, while the right plot groups the average error by the number of clauses
in the DNF formula. Across our benchmark suite, the errors remain around
10−6. The error increases with the number of clauses as the number of calls to
the Binomial sampler increases. Notably, we observe a 10-fold increase in error
when the number of clauses grows from 30 to 700.

The results suggest that APSEst2 is capable of providing highly reliable ap-
proximations of counts across a diverse range of DNF instances, maintaining
accuracy within the predefined error margin despite its simple design. The in-
tegration of our statistical distance bounds into the algorithm allows users to
effectively manage the error budget, ensuring that the algorithm remains robust
and reliable even in the presence of approximation errors from the underlying
Binomial sampler.

7 Conclusion

In this work, we first identified the sources of deviation in the practical imple-
mentations of standard binomial samplers. We observed that exact sampling
from distributions is infeasible in practice due to high runtime overhead; thus,
implementations inevitably introduce deviations. Accordingly, we proposed the
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Fig. 3: Left: Reported errors (δ′) by APSEst2 for individual instances. Right:
Average error grouped by the number of clauses in the DNF formula, showing a
clear upward trend as formula size increases.

usage of statistical distance as the quality metric owing to its ability to allow end
users to obtain sound bounds on the bad events. We also presented a case study
demonstrating the minimal effort required by system designers to incorporate
the reported deviation bounds into their systems.

Limitations and Future Work While our current work establishes a founda-
tional framework, there are several limitations and opportunities for future en-
hancement. The current analysis relies on several simplifying assumptions—for
instance, uniformity in the error distribution—which may not hold in more gen-
eral settings. Additionally, the reported bounds are not yet tight and can be
refined for greater accuracy, making this an important avenue for further re-
search. Moreover, the principles of quality measurement can be extended to
samplers for other distributions. Developing a general framework for error re-
porting across various types of samplers would be a valuable contribution to the
field. Finally, proposing efficient sampling scheme that can achieve the desired
statistical distance with minimal overhead is an open problem that warrants
further investigation.
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22. Hörmann, W.: The generation of binomial random samples. Journal of statistical
computation and simulation 46(1-2), 101–110 (1993)
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Appendix

A Extended Proofs

Proof of Lemma 5

To prove Lemma 5, we begin by analyzing how log n! is approximated. In this
context, we refer to LogFactorial (Equation (5)), which presents an approximation
of log n!. The following lemma provides a bound on the error introduced by using
Log within one LogFactorial call.

Lemma 7. The additive error introduced by using Log in a single LogFactorial
call can be bounded by (k + 2)τ . Specifically,

log(FactLancz(k))− (k + 2)τ ≤ LogFactorial(k) ≤ log(FactLancz(k)) + (k + 2)τ

Proof. Given k, LogFactorial(k) computes and returns 1
2Log(2π)+

(
k + 1

2

)
Log(k+

g+ 1
2 )−

(
k + g + 1

2

)
+Log (At,g(k)). Therefore, from eq. (4) we have the following

inequality,

1

2
Log(2π) +

(
k +

1

2

)
Log

(
k + g +

1

2

)
−

(
k + g +

1

2

)
+ Log (At,g(k))

≤ 1

2
log (2π) +

1

2
τ +

(
k +

1

2

)
log

(
k + g +

1

2

)
+

(
k +

1

2

)
τ

−
(
k + g +

1

2

)
+ log (At,g(k)) + τ

≤ log(FactLancz(k!)) + (k + 2)τ

Similarly, 1
2Log(2π) +

(
k + 1

2

)
Log(k + g + 1

2 ) −
(
k + g + 1

2

)
+ Log (At,g(k)) ≥

log(FactLancz(k!))− (k + 2)τ . ⊓⊔

Lemma 5. Let rInterk denotes the ratio rInterk =
bIntern,p(k)

αh(k) , and let r̃k denote the

computed rejection ratio, defined as r̃k =
bBinSamp
n,p (k)

αh(k) , for any k in [n]. Then, for

all k ∈ [n],
∣∣∣ r̃k
rInterk

− 1
∣∣∣ ≤ (1110n+ 2540)βε+ 14ε log (h(k)) + o(ε)

Proof. BinSamp uses the hat distribution h. We use l̃rk to denote the log of the
computed rejection ratio r̃k, which is given by,

l̃rk := ln ⊖ lk ⊖ lnk ⊕ k ⊗ Log(p)⊕ (n− k)⊗ Log(1− p)⊕ Log(h−1(u))

We assume that the computation of h−1(u) has constant number c > 0 of arith-
metic operations. Therefore the multiplicative error introduced in the computa-
tion of h−1(u) is bounded by cε. Therefore, the computed value of Log

(
h−1(u)

)
is bounded by Log

(
(1± cε).h−1(u)

)
. Consequently, using eq. (4),

Log
(
(1 + cε).h−1(u)

)
≤ log

(
h−1(u)

)
+ log(1 + cε) + τ (6)
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Similarly, considering the error in the term k⊗ Log(p), we deduce using eq. (2),
eq. (4) that,

k ⊗ Log(p) ≤ k log(p) + ε|k log(p)|+ kτ + kτε (7)

Similarly, we can bound the term (n− k)⊗ Log(1− p) as follows,

(n−k)⊗Log(1−p) ≤ (n−k) log(1−p)+ε|(n−k) log(1−p)|+(n−k)τ+(n−k)τε
(8)

Lastly, we are interested in the error in the computation of ln − lk − lnk. Using
lemma 7, we can bound the error as follows:

ln − lk − lnk ≤ log FactLancz(n)− log FactLancz(k)− log FactLancz(n− k)

+ (n+ 2)τ + (k + 2)τ + (n− k + 2)τ (9)

Thus, we bound the following sum using eq. (7), eq. (8) and eq. (9):

ln − lk − lnk + k ⊗ Log(p) + (n− k)⊗ Log(1− p)

≤ log FactLancz(n)− log FactLancz(k)− log FactLancz(n− k) + k ⊗ Log(p)

+ (n− k)⊗ Log(1− p) + (n+ 2)τ + (k + 2)τ + (n− k + 2)τ

= log FactLancz(n)− log FactLancz(k)− log FactLancz(n− k) + k log p+ ε|k log p|
+ (n− k) log(1− p) + ε|(n− k) log(1− p)|+ (3n+ 6)τ + nτε (10)

In a similar way ln + lk + lnk + k ⊗ Log(p) + (n− k)⊗ Log(1− p) is at most,

log FactLancz(n) + log FactLancz(k) + log FactLancz(n− k) + k ⊗ Log(p)

+ (n− k)⊗ Log(1− p) + (n+ 2)τ + (k + 2)τ + (n− k + 2)τ

≤n log n+ k log k + (n− k) log(n− k) + k log p+ ε|k log p|
++(n− k) log(1− p) + ε|(n− k) log(1− p)|+ (3n+ 6)τ + nτε (11)

The last inequality follows from the fact that log FactLancz(n) ≤ n log n. Next we
accumulate all the errors due to basic arithmetic computations in the computa-
tion of l̃rk. We first bound the compound sum using eq. (3):

ln ⊖ lk ⊖ lnk ⊕ k ⊗ Log(p)⊕ (n− k)⊗ Log(1− p)⊕ Log
(
h−1(u)

)
≤ln − lk − lnk + k ⊗ Log(p) + (n− k)⊗ Log(1− p) + Log

(
h−1(u)

)
+ 6ε

(
ln + lk + lnk + k ⊗ Log(p) + (n− k)⊗ Log(1− p) + Log

(
h−1(u)

))
Using the corresponding bounds from eqs. (10) and (11) we can have,

ln ⊖ lk ⊖ lnk ⊕ k ⊗ Log(p)⊕ (n− k)⊗ Log(1− p)⊕ Log
(
h−1(u)

)
≤ log FactLancz(n)− log FactLancz(k)− log FactLancz(n− k)

+ k log(p) + (n− k) log(1− p) + log
(
h−1(u)

)
+ 7ε [n log n+ k log k + (n− k) log(n− k) + k| log(p)|
+(n− k)| log(1− p)|+ log

(
h−1(u)

)]
+ (3n+ 7)τ + log(1 + cε) +O(nτε)
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Thus accumulating all the errors, and denoting log(rInterk ) by lrk, we can bound

the error in the computation of l̃rk using the following inequalities:

l̃rk ≤ lrk + (3n+ 7)τ + 7ε [n log n+ k log k + (n− k) log(n− k)

+k| log(p)|+ (n− k)| log(1− p)|+ log
(
h−1(u)

)]
+ log(1 + cε) +O(nτε)

≤ lrk + (3n+ 7)τ + 21nβε+ 7ε log
(
h−1(u)

)
+ log(1 + cε) +O(nτε)

The second inequality follows from log n, log k, log(n−k), | log p|, | log(1−p)| < β
(due to our choice of β). Using a similar set of inequalities, we can bound the

error in the computation of l̃rk from below.

l̃rk ≥ lrk − (3n+ 7)τ − 21nβε− 7ε log
(
h−1(u)

)
− log(1− cε)−O(nτε)

Therefore, considering r̃k = el̃rk , and using inequalities ex ≤ 1+2x, e−x ≥ 1−2x,
we get the following bound on the obtained rejection ratio:

r̃k ≤ rk · (1 + cε) · e(3n+7)τ+21nβε+7ε log(h−1(u))+O(nτε)

≤ rk(1 + (6n+ 14)τ + 42nβε+ 14ε log
(
h−1(u)

)
+ cε+O(nτε))

≤ rk(1 + 178(6n+ 14)βε+ 42nβε+ 14ε log
(
h−1(u)

)
+ cε+O(nε2))

= rk(1 + (1110n+ 2540)βε+ 14ε log
(
h−1(u)

)
+O(nε2))

The last inequality follows from substituing the value of τ . Similarly, we have,
r̃k ≥ rk(1− (1110n+ 2540)βε− 14ε log

(
h−1(u)

)
−O(nε2)). ⊓⊔

Proof of Lemma 6

Lemma 6. For all k ∈ [n], (1−15ζ)bn,p(k) ≤ bIntern,p (k) ≤ (1+15ζ)bn,p(k), where

ζ denotes the uniform error bound due to the Lanczos approximation and bIntern,p

denotes the intermediate distribution.

Proof. We begin by denoting the approximated probability mass, as calculated
by BinSamp, with bn,p(k) for all k ∈ [n], such that,

bn,p(k) =
FactLancz(n)

FactLancz(k) · FactLancz(n− k)
· pkqn−k

But, here bn,p is not necessarily a well defined distribution, since
∑n

k=0 bn,pk is
not necessarily 1. We normalize bn,p to a distribution and obtain its upper and

lower bounds. From eq. (1) we have (1 − ζ)k! ≤ FactLancz(k) ≤ (1 + ζ)k! for all
k ∈ [n]. Therefore,

n∑
k=0

bn,p(k) ·
1− ζ

(1 + ζ)2
≤

n∑
k=0

bn,p(k) ≤
n∑

k=0

bn,p(k) ·
1 + ζ

(1− ζ)2
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Therefore for all k ∈ [n] we have the following sets of inequalities:

(1− ζ)

(1 + ζ)2
bn,p(k) ·

(1− ζ)2

(1 + ζ)
≤ bn,p(k)∑n

i=0 bn,p(i)
≤ (1 + ζ)

(1− ζ)2
bn,p(k) ·

(1 + ζ)2

(1− ζ)

=⇒ (1− ζ)3

(1 + ζ)3
bn,p(k) ≤

bn,p(k)∑n
i=0 bn,p(i)

≤ (1 + ζ)3

(1− ζ)3
bn,p(k)

=⇒ (1− 3ζ)3bn,p(k) ≤
bn,p(k)∑n
i=0 bn,p(i)

≤ (1 + 3ζ)3bn,p(k)

=⇒ (1− 15ζ)bn,p(k) ≤
bn,p(k)∑n
i=0 bn,p(i)

≤ (1 + 15ζ)bn,p(k)

The third and the last inequalities follow due to the fact that for ζ < 1/3,
1−ζ
1+ζ > 1− 3ζ, (1− 3ζ)3 > 1− 15ζ and (1 + 3ζ)3 < 1 + 15ζ.

Since, bIntern,p (k) =
bn,p(k)∑n
i=0 bn,p(i)

, the result follows directly. ⊓⊔

Proof of Lemma 4 using Lemma 5 and Lemma 6

Lemma 4. Let rk denote the actual rejection ratio, defined as rk =
bn,p(k)
αh(k) , and

let r̃k denote the computed rejection ratio, defined as r̃k =
bBinSamp
n,p (k)

αh(k) , for any k

in [n]. Then, for any k ∈ [0, n], we have:∣∣∣∣ r̃krk − 1

∣∣∣∣ ≤ (1110n+ 2540)βε+ 14ε log (h(k)) + 15ζ + o(ε)

Proof (of Lemma 4). Now we complete the proof of Lemma 4. The rejection

ratio rk is defined as
bn,p(k)
αh(k) . Using Lemma 5 and Lemma 6, we can derive the

following bound on the rejection ratio: r̃k =
bIntern,p(k)

αh(k) ·
bn,p(k)
bIntern,p(k)

≤ (1 + (1110n +

2540)βε+ 14ε log (h(k)) + 15ζ + o(ε)). Similarly we can lower bound r̃k by (1−
(1110n+ 2540)βε− 14ε log (h(k))− 15ζ − o(ε)). ⊓⊔

Proof of Lemma 3

Lemma 3. Suppose h̃ is the deviated version of the hat distribution h due to the
error in the computation of H−1(u). Then, if the error is distributed uniformly
over the range [−εH, εH] and εH ≤ 1

2 , then for any k ∈ [n], (1−εH(3k+1))h(k) ≤
h̃(k) ≤ (1 + wkεH(k + 2))h(k) where, wk = max

(
h(k−1)
h(k) , h(k+1)

h(k)

)
Proof. Without loss of generality, let us assume that h(−1) = h(n + 1) = 0.
Let us also assume that the ideal output of ⌊H−1(u)⌋ is k, and let k′ be the
value of ⌊H−1(u)⌋ as computed in Algorithm 1. Note that k′ ∈ (1± εH)H−1(u).
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Now, because, β ≥ 2⌈log2 n⌉, we have εHH−1(u) ≤ cεn ≤ 1, and hence, k′ ∈
{k − 1, k, k + 1}. Since for all t ∈ [n], Pr

u

(
⌊H−1(u)⌋ = t

)
= h(t),

h̃(k) =
∑

t∈{k−1,k,k+1}
Pr
ε,u

(
k′ = k | ⌊H−1(u)⌋ = t

)
· Pr

u

(
⌊H−1(u)⌋ = t

)
=

∑
t∈{k−1,k,k+1}

Pr
ε,u

(
k′ = k | ⌊H−1(u)⌋ = t

)
· h(t)

Observe that, given ⌊H−1(u)⌋ = t, k′ = t + 1 is possible only when (1 +
εH)H−1(u) ≥ t + 1, that is, H−1(u) ≥ t+1

(1+εH) . Therefore, given ⌊H−1(u)⌋ = t,

and assuming H−1(u) is uniformly distributed over the range [t, t+1), we have,

Pr
ε,u

(
k′ = t+ 1 | ⌊H−1(u)⌋ = t

)
=

∫ v=t+1

v=t

Pr
ε

(
k′ = t+ 1 | ⌊H−1(u)⌋ = t,H−1(u) = v

)
·

f
(
H−1(u) = v | ⌊H−1(u)⌋ = t

)
dv

=

∫ v=t+1

v= t+1
1+εH

Pr
ε

(
k′ = t+ 1 | ⌊H−1(u)⌋ = t,H−1(u) = v

)
dv

where f is the uniform probability density function. The last equality follows
from the fact that, we have Prε

(
k′ = t+ 1 | ⌊H−1(u)⌋ = t,H−1(u) = v

)
= 0 for

v ∈
[

t
1−εH

, t+1
1+εH

]
.

Since the error in the computation of H−1(u) is uniformly distributed over
the range [−εH, εH], therefore, Prε

(
k′ = t+ 1 | ⌊H−1(u)⌋ = t,H−1(u) = v

)
≤

1/2 for all v ∈
[

t+1
1+εH

, t+ 1
]
. Thus, we have Pr

ε,u

(
k′ = t+ 1 | ⌊H−1(u)⌋ = t

)
≤∫ v=t+1

v= t+1
1+εH

1
2 dv = εH(t+1)

2(1+εH) ≤
εH(t+1)

3 . Similarly, we can upper bound the proba-

bility of k′ being t− 1 given ⌊H−1(u)⌋ = t, by Pr
ε,u

(
k′ = t− 1 | ⌊H−1(u)⌋ = t

)
≤

εH(t+1)
3 . Therefore, combining, we can upper bound the probability mass:

h̃(k) ≤ εHk

3
h(k − 1) + h(k) +

εH(k + 2)

3
h(k + 1) ≤ (1 + wkεH(k + 2)) h(k)

Next, observing that H−1(u) ∈
[

k
1−εH

, k+1
1+εH

]
ensures no possibility of error, we

derive a lower bound for the probability of k′ = k given ⌊H−1(u)⌋ = k as

Pr
ε,u

(
k′ = k | ⌊H−1(u)⌋ = k

)
=

∫ v=k+1

v=k

Pr
ε,u

(
k′ = k | ⌊H−1(u)⌋ = k,H−1(u) = v

)
·

f
(
H−1(u) = v | ⌊H−1(u)⌋ = k

)
dv

≥
∫ v= k+1

1+εH

v= k
1−εH

Pr
ε,u

(
k′ = k | ⌊H−1(u)⌋ = k,H−1(u) = v

)
dv
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Since for all v ∈
[

k
1−εH

, k+1
1+εH

]
, Prε,u

[
k′ = k | ⌊H−1(u)⌋ = k,H−1(u) = v

]
= 1,

Pr
ε,u

(
k′ = k | ⌊H−1(u)⌋ = k

)
≥ k + 1

(1 + εH)
− k

(1− εH)
≥ (1− εH(3k + 1))

Where the last inequality follows from the fact that 1
1+εH

≥ 1− εH and 1
1−εH

≤
1+2εH for εH ≤ 1

2 . Consequently, h̃(k) is at least Prε,u
(
k′ = k | ⌊H−1(u)⌋ = k

)
·

h(k) = (1− εH(3k + 1))h(k). This completes the proof. ⊓⊔
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