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ABSTRACT

Sampling is a fundamental task in machine learning and computer science in gen-

eral. Of particular interest to computer scientists are the problems of sampling satisfying

assignments to a Boolean formula uniformly at random (or according to some specified

distribution) from the set of all satisfying assignments of the formula. Despite its im-

portance, due to its inherent di�culty, often heuristic techniques are used to design sam-

plers, which lack theoretical guarantees. Thus, it is crucial to test the correctness of such

samplers, that is, whether a sampler is sampling according to the specified distribution.

But e�cient testers, which are also based on sound theoretical guarantees, are equally

hard to obtain. Only recently, Chakraborty and Meel (AAAI 2019) and later Meel, Pote,

and Chakraborty (NeurIPS 2020) designed the first e�cient and provably correct testers,

Barbarik and Barbarik2, for testing the correctness of CNF-samplers. But due to their “grey-

box” approach, these testers cannot be used to test the correctness of specialized samplers

such as Horn-samplers, which take constraints specified as a Horn formulas a input.

In this thesis work, we design two testers, Flash and wFlash, which test the correctness

of a given Horn sampler. The tester Flash correctly (with probability at least 1 � �)

tests whether the underlying distribution of a Horn-sampler is “"-close” to uniform or “⌘-

far” from uniform by sampling only O(1/(⌘ � ")4) samples from the Horn-sampler that

is being tested. The tester wFlash is a generalization of Flash and tests whether a Horn-

sampler is sampling according to a specified distribution (not necessarily uniform). Its

sample complexity is O(tilt3/(⌘� ")4), where the tilt is the ratio of the maximum and the

minimum (non-zero) probability masses of the specified distribution. We provide prototype

implementations of Flash and wFlash and test three state-of-the-art samplers on a set of

benchmarks. Thus we present the first such practically usable testers for Horn-samplers,

which also have theoretical guarantees.

Keywords: Property Testing, Samplers
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Chapter 1

Introduction

Sampling from complex combinatorial spaces is a fundamental problem in computer science

with wide variety of applications. Often combinatorial spaces are specified via constraints

expressed in logical theories such that every point in the support corresponds to solutions

of the given constraints. The design of e�cient algorithms for sampling from complex com-

binatorial spaces is very di�cult. While techniques such as Markov Chain Monte Carlo

(MCMC) techniques or those based on universal hashing allow design sampling algorithms

that have theoretical guarantees, such algorithms face scalability challenges. As a result,

heuristic techniques are often used to sample satisfying assignments. While heuristic tech-

niques often work well in practice and are often devoid of sound theoretical guarantees in

general, such techniques may perform well for sceanrios of interest. Consequently, there is

a dire need for design of testers that can verify whether a sampler is sampling according

to the desired distribution for a given combinatorial space.

Due to the probabilistic nature of the sampling algorithms, designing testers for them

is a very di�cult task. A tester that uses black-box access to the sampling algorithm would

essentially need to test properties of the unknown underlying distribution using samples
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from the unknown distribution - and this requires an exponential number of samples [5, 3,

6, 31]. Recently, Barbarik was proposed as a provable correct tester when the underlying

set of constraints are specified in Conjunctive Normal Form (CNF) [9, 22]. Our main

objective is to develop provable correct testers when the underlying set of constraints form

a Horn formulae.

1.1 Verification of Samplers

In the field of sampler testing, the main goal is to test whether the distribution induced

by the satisfying assignments of the sampler to be tested is similar to the distribution of

the satisfying assignments of the ideal sampler at hand. It turns out that this problem has

been extensively studied in the sub-field of distribution testing, and in property testing in

general.

The primary goal is to decide whether two distributions D1 and D2 are "-close or ⌘-far,

where " and ⌘ are the closeness and farness parameters respectively, provided as inputs.

Generally, the distance measure that is mostly considered is the `1 distance (or variation

distance). This problem is termed as the tolerant testing of two distributions. It turns out

that ⇥( N

logN ) samples are required [30] for this problem in general, where N denotes the

support size of the distributions to be tested.

A restricted problem called equivalence testing, where the goal is to decide whether

two distributions are same or they are ⌘-far also requires ⇥(N
2
3 ) many samples [4, 32].

Moreover, the basic problem of testing whether a distribution is uniform takes ⇥(
p
N)

samples [24, 20]. However, in case of samplers, as the size N of the support of the distribu-

tions over the satisfying assignments of the samplers is extremely large, these algorithms

are not practical to use.
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In order to remedy this problem, a new model termed as conditional sampling model

was introduced by Chakraborty et. al [8] and Cannone et. al [7]. In this setting, given a set

T ✓ [N ], the sampler obtains a sample i 2 T from the distribution, conditioned on the set

T . Surprisingly, several interesting problems which are di�cult in the normal setting, can

be solved very easily in this model, often using poly-logarithmic or even constant number

of samples. In fact, the task of testing whether a distribution is uniform can be decided

by taking only constant number of samples here, depending only on the input parameters.

Moreover, the tolerant testing of the equivalence of two distributions can be done by using

samples that is polynomial in logN .

Chakraborty and Meel [9] crucially used the framework of conditional sampling in order

to design the first tester to test whether the satisfying assignments produced by a sampler

is uniform or not. Their tester Barbarik is designed to test samplers for CNF formulas,

and takes only eO( 1
(⌘�2")4 ) many samples, where " and ⌘ are the closeness and farness

parameters respectively. In fact, they employed a variant of conditional sampling PCOND,

defined in Cannone et.al [7], where the size of the conditioning set T is 2, and used the

technique of chain-formula to generate conditional samples. However, it turns out the the

sample complexity of tolerant testing of closeness of distributions will remain polynomial

in logN , even with PCOND model.

In order to bypass this poly-logarithmic dependency on N , the authors of [9] used

two di↵erent distance measures for the closeness and farness testing. Namely, they used

multiplicative `1 distance for the closeness measure, where as they employed `1 distance

for the farness case. Later Meel, Pote and Chakraborty [22] used similar techniques in order

to design the tester Barbarik2 for testing weighted samplers for CNF formulas. Barbarik2

takes only eO( tilt2

⌘(⌘�6")3 ) many samples, where tilt refers to the maximum ratio between the

weights of any two satisfying assignments of the Horn formula '. Very recently, Pote and

Meel [25] studied the problem of equivalence testing in the context of testing probabilistic
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circuits.

1.2 Importance of Horn Formulae

CNF is a widely used form to represent Boolean formulas owing to its expressiveness. In

particular, every Boolean formula can be expressed in CNF with a linear blow-up in the

size. Such expressiveness, however, comes at the cost of computational complexity: even

determining satisfiability of CNF formulas is NP-hard. Accordingly, symbolic reasoning

community have explored restricted fragments of Boolean formulas that have tractable

complexity. Of one such fragment are Horn formulas, which play a vital role in logical

systems, and form the backbone of most logic programming languages, such as Prolog.

Horn formulas have been used for automated theorem proving by using first-order res-

olution [21], program verification [14], as well as in program analysis for intermediate

representation and transformations [19]. Horn formulas are also used to model several

real-life topological systems, such as power transmission lines, water and gas supply lines,

and telecommunications, for example in [16].

1.3 Horn Sampler and Testing

While the satisfiability of Horn formulas is in P (thanks to the Schaefer’s dichotomy theorem

[26]), its counting variant is #P-complete. Since weighted model counting is equivalent

to sampling, there has been an ongoing demand for designing e�cient Horn samplers

that, given a Horn formula ', can output random satisfying assignments of ' e�ciently.

As in the case of CNF-samplers, we have some algorithms based on MCMC or hashing

methods that have theoretical guarantees but are slow in practice. On the other hand,
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there are heuristic sampling algorithms that work well in practice, but are devoid of sound

theoretical guarantees. In this thesis, we design e�cient testers for testing the correctness

of Horn-samplers. When the sampler is supposed to uniformly sample from the satisfying

assignments of ', we call them Uniform-Horn-sampler. For the general version, when

the sampler is supposed to sample according to some specified distribution over the set

of satisfying assignments, we will refer them as Weighted-Horn-sampler. We design and

present two testers Flash and wFlash for testing the correctness of Uniform-Horn-sampler

and Weighted-Horn-sampler, respectively.

We would now like to emphasize the fact that the testers Barbarik [9] and Barbarik2 [22]

do not provide us testers for Horn samplers. This is due to the inner workings of the testers,

both of which are based on the “grey-box” sampling technique of drawing samples from

a conditional distribution. To obtain these conditional samples, the testers Barbarik and

Barbarik2 create a new formula '̂ and draws samples by running the sampler over '̂. They

prove the correctness of their testers under suitable assumptions. Vaguely speaking, they

assume that the behavior of the sampler (under test) would remain somewhat unchanged

whether it is given the formula ' or '̂ as the input. In the case of Horn-samplers, this

assumption is not valid (for their testers) as the formula '̂ that they create from original

' as a purpose of conditioning, might not be a Horn formula, although the formula '

was Horn. This is a major stumbling block for using the testers Barbarik and Barbarik2

for testing Horn-samplers. In this context, it is worth asking: whether it is possible to

circumvent the above stumbling block and design testers for Horn-samplers?

1.4 Contribution of this thesis

The primary contribution of this thesis is to answer the above question a�rmatively. In

particular, we design two testers, Flash and wFlash , that can test uniform and weighted
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Horn samplers. Before this work, Shayak Chakraborty established a primary work by

developing the algorithm of Flash for Uniform-Horn-sampler-tester in his thesis work in

2019. But there were some gaps in the proofs which we close in this thesis and reduce

down the complexity from previous version of Flash developed by Shayak. Also, we extend

the work to develop a Horn Sampler Tester for general case, that is, a Weighted-Horn-

sampler-tester.

• We prove that if the underlying distribution from which the Horn-sampler under test

draws samples is "-close (in multiplicative `1 norm) to the uniform distribution, then

our tester Flash will ACCEPT with probability at least (1� �). On the other hand,

if the underlying distribution is ⌘-far (in the `1 norm) from the uniform distribution,

then our tester Flash will REJECT with probability at least (1 � �), assuming the

sampler satisfies some conditions. Our tester Flash draws O(1/(⌘�")4) samples from

the underlying distribution.

• We extend our tester Flash , and design another novel tester wFlash for Weighted-

Horn-samplers, that given any arbitrary but fixed weight function wt, can test

whether the distribution induced by the satisfying assignments produced by the

Horn-sampler follows the weight function wt. As in the case of Flash , we also pro-

vide a detailed proof of correctness of wFlash .

• We further provide a prototype implementation of Flash and wFlash and the empirical

results over three state-of-the-art samplers on a set of benchmarks. Our empirical

evaluation shows that we achieve over 107-factor speedup over baseline approach.

Organization of the Thesis: In Chapter 2, we formally define the necessary ter-

minology of our work. In Chapter 3, we present our Uniform-Horn-sampler-tester Flash

. In this chapter, we have described our prime constitutional subroutines of Flash and
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wFlash , that is, HornKernel and Encode . And subsequently in the next Chapter 4 we

present our Weighted-Horn-sampler-tester wFlash . We show the evaluation results of the

prototype implementations of our testers Flash and wFlash with respect to three sate-of-

the-art samplers UniGen, QuickSampler and STS in Chapter 5. Finally, we conclude

in Chapter 6.
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Chapter 2

Definitions and Preliminaries

In this chapter, we present some preliminaries that are relevant to the contributions of this

thesis. We begin with a discussion on the general concept of sampling, and move on to

describe relevant work on samplers and their verifiers. Further, we present an overview of

the conditioning method.

2.1 The Problem of Sampling

In probability theory, we define a sample space to be the set of all possible outcomes of a

given experiment. Once a distribution is defined over the sample space, the probability of

outcome of a certain sample is fixed by the distribution. A sampler, for us, is a randomized

algorithm that emulates a distribution over the sample space and generates or outputs a

sample according to its distribution. In this thesis, we use the terms sampler and generator

interchangeably.
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In our setup, we are dealing with SAT-samplers. For a SAT-sampler, given a formula

', the sample space is the set of all witnesses R', and in each call the sampler outputs a

satisfying assignment that is a witness of ' according to some distribution.

Definition 2.1.1 (Sampler). Given a problem instance E and a distribution defined D⌦E

defined over the sample space ⌦E , a Sampler G is a randomized algorithm that generates

elements from ⌦E according to the distribution D⌦E , that is,

8x 2 ⌦E ,P[G(E) = x] = PD⌦E
[x]

Simply putting, a sampler is like a blackbox, which on request generates a given number

of samples from the sample space according to some distribution.

2.1.1 Horn Sampler

As we are mostly interested in SAT samplers, rather Horn Samplers in particular, we will

define some notions related to Horn Samplers and samplers in general, needed further in

this thesis.

Definition 2.1.2 (Weight function). Let S be a set of Boolean variables. A weight function

wt : {0, 1}|S| ! (0, 1) assigns weight to each assignment that can be formed using the set

S.

Definition 2.1.3 (tilt). Consider a Horn formula ', and the associated arbitrary but fixed

weight function wt. We define tilt of ' with respect to wt as tilt(', wt) = max�1,�22R'

wt(�1)
wt(�2)

.

We will sometime refer tilt(', wt) as tilt when it is clear from the context.

Definition 2.1.4 (Weighted-Horn-sampler). A Weighted-Horn-sampler G(', wt, S,) is a

randomized algorithm that takes a Horn formula ', a set of variables S ✓ Supp('), a

9



weight function wt and an integer , and outputs  many independent samples from R'#S ,

the set of satisfying assignments of ', projected on the set S.

A weight function helps us to define a distribution in practical scenario. When the

weight function is uniform, that is, it assigns the same weight to all the witnesses, the

Weighted-Horn-sampler is said to be a Uniform-Horn-sampler.

For brevity, we will often write G(', wt, S,) as G(') or G, when it is clear from the

context. Also, we will write the distribution induced by the samples obtained from G as

DG(').

Definition 2.1.5 (Ideal Weighted-Horn-sampler and Ideal Uniform-Horn-sampler). Con-

sider a Horn formula ', a set of variables S ✓ Supp('), and a weight function wt. A

Horn sampler IW(', S, wt) is said to be an ideal Weighted-Horn-sampler with respect to

the weight function wt, if

8� 2 R'#S , P [IW(', S, 1) = �] =
wt(�)P

�12R'#S
wt(�1)

When the weight function wt is uniform, that is, wt(�) = 1
|R'#S|

for all �, the ideal

Weighted-Horn-sampler is said to be an ideal Uniform-Horn-sampler, and is denoted as

IU .

Definition 2.1.6 ("-closeness and ⌘-farness). Consider any Weighted-Horn-sampler G and

an ideal Weighted-Horn-sampler IW . G is said to be "-close to IW , if for all Horn-formula

' and � 2 R'
1,

(1� ")P [IW(') = �]  P [G(') = �]  (1 + ")P [IW(') = �] . (2.1)

1The definition is given with S = Supp('). However, similar definition can be defined for any
arbitrary S.
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If G is "-close to the ideal Uniform-Horn-sampler, then G is called an "-Additive Almost

Uniform-Horn-sampler (AAU).

On the other hand, G is said to be ⌘-far from IW with respect to some Horn-formula

' if
X

�2R'

|P [G(') = �]� P [IW(') = �] | � ⌘. (2.2)

Example 2.1.7. Let ' := (¬x1 _ x2) ^ (¬x1 _ ¬x3) be a Horn formula. Then the witness

set of ' is

R' = {000, 001, 010, 011, 110}

now, we can define a weight function wt on the witness space R' as follows:

wt(000) = 0.25

wt(001) = 0.25

wt(010) = 0.5

wt(011) = 0.75

wt(110) = 0.75

Hence, probability that a Ideal Weighted-Horn-sampler sample � = 000 is 0.25
2.5 = 0.1. Now,

if we incorporate a 0.2-close Weighted-Horn-samplerG then P[G = 000] 2 [0.08, 0.12].

2.2 Horn Sampler Verification

Since most of the times the witness space R' is too large for enumeration, samplers use

many heuristics to generate samples, quality of which do not often have theoretical guar-

antees. Thus it is necessary to verify the quality of the sample.
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Definition 2.2.1 (Horn-sampler-tester). A Horn-sampler-tester takes as input a Weighted-

Horn-sampler G, an ideal Weighted-Horn-sampler IW , a tolerance parameter " 2 (0, 1/3],

an intolerance parameter ⌘ 2 (0, 2] with ⌘ > 3", a confidence parameter �, and a Horn

formula ', and:

(1) If G is "-close to the ideal Weighted-Horn-sampler IW , then the tester outputs AC-

CEPT with probability at least 1� �.

(2) If G is ⌘-far from an ideal Weighted-Horn-sampler IW with respect to ', then it

outputs REJECT with probability at least 1� �.

Since the Horn-sampler-tester will be have black-box or grey-box access to theWeighted-

Horn-sampler G, the tester would start by studying the output of G on the input '. In

practice, we are not provided with the exact probability mass function the sampler G fol-

lowing to retrieve a sample. In such situations we need to estimate the probabilities with

a certain guarantee, using maximum likelihood estimation. In order to determine the num-

ber of samples needed to estimate the unknown probability with a certain probabilistic

guarantee, we use Cherno↵ bounds. In the next section we explain the notion of Cherno↵

bounds and in the following subsection we explain how parameter estimation is done using

Maximum Likelihood estimation.

2.3 Important Probabilistic Methods

2.3.1 Cherno↵ Bound

In our work, we use the following four concentration inequalities, see [15].
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Lemma 2.3.1 (Cherno↵-Hoe↵ding bound). Let X1, . . . , Xn be independent random vari-

ables such that Xi 2 [0, 1]. For X =
nP

i=1
Xi and µ = E[X], the following holds for all

0  �  1

P (|X � µ| � �µ)  2 exp

✓
�µ�2

3

◆
.

Lemma 2.3.2 (Cherno↵-Hoe↵ding bound). Let X1, . . . , Xn be independent random vari-

ables such that Xi 2 [0, 1]. For X =
nP

i=1
Xi and µl  E[X]  µh, the followings hold for

any � > 0.

(i) P (X � µh + �)  exp
⇣
�2�2

n

⌘
.

(ii) P (X  µl � �)  exp
⇣
�2�2

n

⌘
.

Lemma 2.3.3 (Hoe↵ding’s Inequality). Let X1, . . . , Xn be independent random variables

such that ai  Xi  bi and X =
nP

i=1
Xi. Then, for all � > 0,

P (|X � E[X]| � �)  2 exp

0

BB@
�2�2

nP
i=1

(bi � ai)2

1

CCA

Lemma 2.3.4. Let Z1, . . . , Zn be n independent and identically distributed 0 � 1 random

variable. Then, the following hold:

(i) If E[Zi] � ✓ � 0, then for any t  ✓, we have

P

2

4
X

j2[n]

Zj

n
 t

3

5  exp

✓
�
(✓ � t)2n

2✓

◆

(ii) If E[Zi]  ✓, then for any t � ✓, we have

P

2

4
X

j2[n]

Zj

n
� t

3

5  exp

✓
�
(t� ✓)2n

2✓

◆
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2.3.2 Maximum Likelihood Estimation

Suppose we are given a probability distribution D(✓) with some unknown parameter ✓ along

with a sample configuration {x1, x2, ..., xn} drawn according to D(✓). Then the likelihood

function L(✓) is defined as,

L(✓) = PD(✓)(x1, x2, ..., xn; ✓)

Maximum likelihood estimation tells us to pick the value of ✓ for which the likelihood

function L(✓) is maximized.

For example, suppose we are to determine the bias of a coin which is tossed n times

and nH many heads are occured. By MLE then we infer that the bias of the coin is nH/n.

Now, surely there will be some error in the estimated bias. We can use some concentration

bounds to infer how many times we should toss the coin to bound the error to an additive

constant. If the bias of the coin is p then with probablity eO(�2n), the estimate nH/n is

within additive error of �,

P
h���p�

nH

n

���  �
i
� e�

2
n/2

We define M(�) to be the number of times we need to toss the coin to estimated the bias

upto an additive error of � with probability 1/2. Note that, if the coin is tossed k⇥M(�)

times then the probability of the estimated bias being in the range [p � �, p + �] is given

by (1� (1/2)k).

2.4 Chain Formulas

The notion of chain formula was first introduced in [11]. Chain formulas provide a natural

way to construct linear sized Boolean formulas with a precise number of the satisfying

14



assignments. The structure of the chain formula has been exploited after its inception.

Definition 2.4.1 (Chain Formula). A chain formula is defined as follows:

(1) Every literal (a boolean variable or its negation) is a chain formula.

(2) If l is a literal and ' be a chain formula such that neither l nor ¬l appear in ', then

(l _ ') as well as (l ^ ') are two chain formulas.

(3) Let m > 0 be a natural number and k < 2m be a positive odd number. Let c1c2 . . . cm

be the m-bit representation of k, where cm is the Least Significant Bit (LSB) in the

representation of m. For every j 2 {1, . . . ,m � 1}, if cj = 1 then Cj is “_’, else if

cj = 0, then Cj is “^”. The chain formula  k,m is defined as:

 k,m(a1, a2, . . . , am) = a1C1(a2C2(. . . (am�1Cm�1am) . . .)

where a1, a2, . . . , am are variables.

Example 2.4.2. For k = 7 and m = 5, as the binary representation of 7 in 5 bits is 00111,

the corresponding chain formula would be  k,m(a1, a2, a3, a4, a5) = (a1 ^ (a2 ^ (a3 _ (a4 _

a5)))). We will omit the variables when it is clear from the context.

Lemma 2.4.3 ([11]). Given a natural number m > 0 and k < 2m, there exists CNF-

formulas  k,m such that the size of  k,m is linear in m and  k,m has exactly k satisfying

assignments.

Due to this property of chain formulas, they have been used in many contexts since

their inception. But the chain formulas constructed in Lemma 2.4.3 are not necessarily

Horn - a property that we consider in this work. So, we extend the above lemma to obtain

Horn-chain-formulas.

15



2.4.1 Horn Chain Formula

We define a special class of Chain formula as designed in [11]. Given a Chain formula

 k,m(a1, ..., an), we convert it to corresponding Horn Chain formula  0

k,m
by replacing all

ai’s by it’s complement ãi. Loosely speaking, a Horn chain formula is a chain formula

where every literal is a negative literal.

Lemma 2.4.4 (Horn-chain-formula). Given a natural number m > 0 and k < 2m, any

chain formula  k,m can be transformed into a Horn-chain-formula  0

k,m
with the following

properties:

(i) The support and structure of  k,m is preserved in  0

k,m
.

(ii) | 0

k,m
| is linear in m and  0

k,m
has exactly k satisfying assignments.

(iii)  0

k,m
can be converted to an equivalent Horn formula with m variables and at most

m clauses.

Proof. Let m > 0 be a natural number and k < 2m and  k,m be the corresponding chain

formula as defined above. Now we proceed to prove the properties below:

(i) Let  0

k,m
=  k,m. Now, for each j 2 {1, . . . ,m}, we replace aj by eaj in  0

k,m
. Since

none of the variables have been changed, Supp( k,m) = Supp( 0

k,m
). Also, we have

not changed any of the connectives, that is, for each j, Cj remains same. Thus, the

structure of  k,m is preserved in  0

k,m
. This completes the proof of the first part of

the lemma.

(ii) First, we will prove that  0

k,m
has exactly k satisfying assignments. We prove this

by using induction over m. Let us assume that the statement holds for all Horn-

chain-formula upto m variables. Now we will prove this for Horn-chain-formula with

(m+ 1) variables.
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Here we will represent k in m + 1 bits. Let k1 denote the integer if we ignore the

MSB of k in (m+ 1)-bit representation. Now we consider the following two cases:

Case (a): If the Most Significant Bit (MSB) of k in (m+ 1)-bit representation is 0, then

we can write the above formula as ea1 ^  0

k1,m
. The only way to satisfy this

formula is by satisfying both ea1 and  0

k1,m
. Thus the number of solutions of

this formula is k1. Since the MSB is 0, k = k1, and the statement holds true

for this case.

Case (b): Now consider the other case when MSB of k in (m+1)-bit representation is 1.

Then we can write the above formula as ea1 _  0

k1,m
. To satisfy this, we could

either satisfy ã1, which can be done in 2m ways by setting a1 as False and

rest of the variables can be assigned any value, or by setting a1 as True and

satisfying the formula  0

k1,m
which has k1 solutions. Thus the total number of

solutions for this case is 2m + k1. Also, note that k = 2m + k1.

Thus,  0

k,m
has exactly k satisfying assignments.

A similar inductive argument on m can be used to prove that | 0

k,m
| is linear in m,

where two lists are su�cient to store the Horn-chain-formula  0

k,m
. We use one list

to store the m-bit binary representation of k, and another list to store the m literals

of  0

k,m
. This completes the proof of the second part of the lemma.

(iii) We use induction on the number of variables to prove the statement. Let us assume

that the statement is true for all Horn-chain-formula upto (m � 1) many variables,

and consider a Horn-chain-formula of m variables.

Let us first keep aside the variable a1 associated with the MSB of m. Then we write

the formula as  0

k,m
= ea1C1( 0

k1,m�1). Now  0

k1,m�1 =  0
1 ^  

0
2 . . . ^  

0
j
, where for

each i 2 {1, ..., j},  0

i
is a Horn clause with at most m� 1 variables and j  m� 1,

following the induction hypothesis. Now, consider the two following cases:
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Case (a): If C1 is ^, then ea1 becomes a unit negative clause which is a Horn clause itself.

Thus,  0

k,m
is a Horn formula with m variables and at most m clauses.

Case (b): If C1 is _, then  0

k,m
= ea1 _ ( 0

1 ^ . . . ^  0
j
). By the distributive property, we

can expand it into  0

k,m
= ( ea1 _  0

1) ^ ( ea1 _  0
2) . . . ^ ( ea1 _  0

j
).

As the addition of the negative literal ea1 does not change the nature of the

Horn formulas  0

i
, with i 2 {1, . . . , j},  0

k,m
now has m� 1 clauses each with at

most m variables.

Therefore,  0

k,m
can be converted to an equivalent Horn formula with m variables

and at most m clauses. This proves the third part of the lemma.

Example 2.4.5. Let’s consider the Chain formula  taken in the Example 2.4.2, that is,

 7,5(a1, a2, a3, a4, a5) = (a1 ^ (a2 ^ (a3 _ (a4 _ a5))))

We can convert it to the following Horn Chain formula by replacing all the literals ai’s by

ãi,

 0

7,5(a1, a2, a3, a4, a5) = (ã1 ^ (ã2 ^ (ã3 _ (ã4 _ ã5))))

Note that,  0
7,5 has exactly 7 satisfying assignments. We have to make a1, a2 as false and

the rest can be satisfied in 7 ways. So the witness set is

R 
0
7,5

= {00000, 00001, 00010, 00011, 00100, 00101, 00110}

and
���R 

0
7,5

��� = 7. Now again note that, we can expand  0
7,5 as follows

 0

7,5 = ã1 ^ ã2 ^ (ã3 _ ã4 _ ã5)
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where each clause is a Horn Clause and hence it is a Horn formula.

2.5 Log-Linear Distributions and Inverse Trans-

form Sampling

Log-linear distributions have myriad of applications in machine learning, such as in graph-

ical models, skip-gram models, and so on. See [23] for an exhaustive list of references. For

any � 2 {0, 1}n and any parameter ✓, log-linear distribution is formally defined as:

P[� | ✓] / e✓·�

For our purpose, we use literal weighted functions, a notion defined by Chavira and

Darwiche [12], which is equivalent to log-linear models.

Definition 2.5.1. For any Horn formula ', and a set S ✓ Supp('), a weight function

wt : {0, 1}|S| ! (0, 1) is said to be a literal weighted function, if there exists another

function W : S ! (0, 1), such that for any satisfying assignment � 2 R'#S , wt(�) is

defined as follows:

wt(�) =
Y

x2�

8
><

>:

W (x), x = 1

1�W (x), x = 0

wt is said to be literal weighted function with respect to the function W .

In order to construct the new Horn formula b' from the input formula ' and the

weight function wt, we apply the method of inverse transform sampling. The proof follows

in similar line as that of Meel, Pote and Chakraborty [22]. However, instead of chain

formulas, we use the notion of Horn-chain-formulas, introduced in Lemma 2.4.4.
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Lemma 2.5.2. Given any "-Almost Additive Uniform-Horn-sampler G, a Horn formula

', along with a set S = Supp('), a literal weighted function wt : {0, 1}|S| ! (0, 1), a new

Horn formula b' can be constructed such that the following holds:

8� 2 R' :
(1� ")wt(�)P
�12R'

wt(�1)
 PG(b', S,�) 

(1 + ")wt(�)P
�12R'

wt(�1)

Proof. In order to construct the new Horn formula b', for each yi 2 S, we will use a set of

mi many fresh variables Si = {y1
i
, . . . , ymi

i
} that have not been used before. Once we have

the new variable set Si, we will construct a Horn-chain-formula  0

ki,mi
(y1

i
, . . . , ymi

i
) for some

positive odd integer ki < 2mi , as defined in Lemma 2.4.4. We will write  0

ki,mi
(y1

i
, . . . , ymi

i
)

as  0

ki,mi
when it is clear from the context. We add the new clause (yi ()  0

ki,mi
).

For each variable yi 2 S, if yi = 1, then W (yi) = ki
2mi , and if yi = 0, then W (yi) =

1 � ki
2mi , and (yi ()  0

ki,mi
) is the corresponding clause. Thus, the Horn formula b' is

defined as follows:

b' = '
^

(
^

i2S

(yi ()  0

ki,mi
))

The size of the set of satisfying assignments of b' is as follows:

��Rb'
�� =

X

�2Rb'

1 =
X

�2R'

X

�12Rb':�1#S=�

1

For any assignment �, let �0 denote the set of variables that are assigned the False

value in �. Similarly, �1 corresponds to the set of variables that are assigned the True

value in �. Thus, we can say that
P

�12Rb':�1#S=�
1 =

Q
i2�0

(2mi � ki)
Q
i2�1

ki
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Now consider the Uniform-Horn-sampler IU :

PIU (b', S,�) =
X

�12Rb':�1#S=�

PIU (b', S,�1)

=
X

�12Rb':�1#S=�

1��Rb'
��

=

P
�12Rb':�1#S=�

1

P
�2R'

P
�12Rb':�1#S=�

1

=

Q
i2�0

(2mi � ki)
Q
i2�1

ki
P
�2R'

Q
i2�0

(2mi � ki)
Q
i2�1

ki

=

Q
i2�0

(2mi � ki)
Q
i2�1

ki
Q
i2S

2mi
·

Q
i2S

2mi

P
�2R'

Q
i2�0

(2mi � ki)
Q
i2�1

ki

=

Q
i2S

W (�#yi)

P
�2R'

Q
i2S

W (�#yi)

=
wt(�1)P

�2R'

wt(�)
(2.3)

As G is "-close to the ideal Uniform-Horn-sampler IU , we can say that

(1� ")PIU (', S,�)  PG(', S,�)  (1 + ")PIU (', S,�)

Following Equation (2.3), we can say that

8� 2 R' :
(1� ")wt(�)P
�12R'

wt(�1)
 PG(b', S,�) 

(1 + ")wt(�)P
�12R'

wt(�1)
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As it was also mentioned in [22], we would like to emphasize the fact that the above

lemma (Lemma 2.5.2) holds only for "- AAU Horn samplers. The analogous statement

does not hold for ⌘-far Horn samplers. As a result, we can not directly apply Lemma 2.5.2

to test closeness to ideal Uniform-Horn-sampler.
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Chapter 3

Tester for Uniform Horn Sampler

In this chapter, we shall describe our tester Flash for Uniform-Horn-samplers. We shall

describe first the methodology of Flash in section 3.1 and then will prove the correctness

of Flash and determine the sample complexity of our approach in section 3.2.

3.1 Methodology of Flash

Our Uniform-Horn-sampler-tester Flash , takes as input a black-box Horn sampler G, a

Horn formula ', three parameters ", ⌘, �, such that " 2 (0, 13 ], ⌘ > 9", � > 0, and outputs

ACCEPT with probability at least 1 � �, if G is an "-AAU-Horn-sampler, and if the

distribution of the satisfying assignments corresponding to G, that is, DG('), is ⌘-far in

`1 distance from the uniform distribution, it outputs REJECT with probability at least

1� �.

While the basic framework of our tester Flash is similar to that of Barbarik , there are
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significant and crucial di↵erences particularly in the subroutines used. So, we start by

describing the subroutines.

3.1.1 HornKernel

The job of the subroutine HornKernel is to take as input a Horn formula ', two satisfying

assignments �1,�2 2 R', and an integer , and returns a Horn formula '0 such that ' and

'0 have “similar” structures, and the following properties are satisfied:

(1)
��R'0

�� = 2⌧ . (2) Supp(') ✓ Supp('0).

(3) Let 0̃ denote the assignment whose only True literals are the common true literals

of �1 and �2.

– If 0̃ 62 R', then R'0#S has only two elements �1 and �2 and

��{x | x 2 R'0 & x#S = �1}
�� =

��{x | x 2 R'0 & x#S = �2}
�� .

– If 0̃ 2 R' then R'0#S has only three elements �1, �2 and 0̃ and

��{x | x 2 R'0 & x#S = �1}
�� =

��{x | x 2 R'0 & x#S = �2}
��

=
��{x | x 2 R'0 & x#S = 0̃}

�� .

In order to achieve these properties, the subroutine HornKernel , in Line 1, constructs

a Horn formula T from �1, �2 using the subroutine Encode , such that �1, �2 and 0̃ are

the only satisfying assignments of T . We note that, it is in fact not possible to construct

a Horn formula with only two satisfying assignments �1 and �2, and due to this reason,

we have to deal with the third satisfying assignment, namely 0̃. The subroutine Encode

(Algorithm 3) is one of the technical contributions of this work.
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Algorithm 1: HornKernel (', �1, �2, ⌧)

1 T  Encode (�1, �2);
2 '̂ ' ^ T ;
3 Lits1  (�1\�2);
4 Lits2  (�2\�1);
5 n min(|Lits1 [ Lits2|, 4);
6 k  d⌧

1/n
e, m dlog(k)e;

7 V  NewVars (',m, n);
8 ix 0;
9 for i 2 [n] do

10 l ⇠ Lits1 [ Lits2;
11 '̂ '̂ ^ (l !  

0

k,m
(V [ix : ix+m]));

12 '̂ '̂ ^ (¬l !  
0

k,m
(V [ix : ix+m]));

13 ix ix+m;
14 return '̂;

Algorithm 2: NewVars (',m, n)

1 R set of all variables;
2 S  supp(');
3 V  ;;
4 for i 2 [n] and j 2 [m] do
5 l ⇠ R \ S;
6 V  V [ l;
7 return V ;

We shall describe the algorithm HornKernel assuming the subroutine Encode which we

shall be describing in the next subsection. After HornKernel constructs a Horn formula T

from �1, �2 using the subroutine Encode (in Line 1), such that �1, �2 and 0̃ are the only

satisfying assignments of T , in Line 2, it constructs a new Horn formula b' by conjuncting

the original Horn formula ' with T . In Line 3 and Line 4, HornKernel constructs the

symmetric di↵erence of �1 and �2 by generating two sets Lits1 and Lits2, where the

symmetric di↵erence corresponds to a set of literals which are true in exactly one of �1 and

�2. In Line 5, it sets the variable n to minimum of |Lits1 [ Lits2| and 4, which indicates
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the number of Horn-chain formulae it will generate further. Then in Line 6, it calculates

the values of k and m which are the parameters needed to produce Horn-chain formula

 0

k,m
(from Lemma 2.4.4). As noted earlier, the construction of Horn-chain formulas in

Lemma 2.4.4, is another important technical contribution of this thesis. Note that,  0

k,m

has exactly k many satisfying assignments. Then, in Line 7, it generates a list V of n⇥m

many new variables that are not present in ' using a subroutine NewVars . Finally in the

Loop of Line 9, HornKernel constructs a new Horn formula '̂ by adding n many Horn-

clauses of the form (l !  0

k,m
) and (¬l !  0

k,m
) over the set of newly generated variables

V , where l is a literal sampled from Lits1[Lits2, and  0

k,m
is a Horn-chain formula defined

over the variables of V .

3.1.2 Encode

As we have already stated, this subroutine is on eof the key contribution of this work.

Given the two witnesses �1 and �2 as input, the overall idea of Encode is to partition

the set of variables appearing in �1 and �2 into four equivalence classes 1: (i) equivalence

class [xtLit] containing all the common True literals of �1 and �2, (ii) equivalence class

[xfLit] containing all the common False literals of �1 and �2, (iii) equivalence class [xdiff1]

containing all the literals which are True in �1, but False in �2, and (iv) equivalence class

[xdiff2] containing all the literals which are False in �1, but True in �2. Thus Encode first

finds the set of common True and False literals of �1 and �2 by means of cmmTrueLits

and cmmFalseLits respectively. It also finds the set of literals that have di↵erent values

in Line 5 using UnCmmLits.

In order to consider the first equivalence class [xtLit] containing only the common True

literals of �1 and �2, in the for loop at Line 8, it constructs a formula T by adding

1Equivalence classes with respect to the relation () .
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equivalence between xtLit and the common True literals obtained from Line 3. Moreover,

to ensure that all these variables are assigned the True value, it further conjuncts the literal

xtLit with T in Line 10. Similarly, for the second equivalence class [xfLit] of the common

False literals of �1 and �2, it runs the for loop in Line 11, and conjuncts the literal ¬xfLit

in Line 13. In order to take care of the last two equivalence classes, it first finds two

variables xdiff1 and xdiff2 (using findSplittingV ars) such that, xdiff1 = 0 and xdiff2 = 1

in the witness �1, but xdiff1 = 1 and xdiff2 = 0 in the witness �2 2. Using these two

variables xdiff1 and xdiff2, Encode constructs two formulas in the for loop starting from

Line 17. Finally, to ensure the di↵erent values of the two equivalence classes, Encode adds

the formula (xdiff1 =) ¬xdiff2) in Line 23. It is interesting to note that we might

have added the formula (xdiff1 () ¬xdiff2) in Line 23. However, it turns out that

(¬xdiff2 =) xdiff1) is not a Horn formula 3. This causes 3 witnesses of T : �1, �2, and

0̃, instead of only �1 and �2.

Example 3.1.1. Let’s consider two satisfying assignments of a Horn formula ' defined on

eight literals x1, x2, .., x8,

�1 = 11001100

�2 = 11110000

Then a formula T returned by Encode can be as follows:

T := x1¬x7(x1 () x2)(x7 () x8)(x3 () x4)(x5 () x6)(x3 =) ¬x5)

Note that, the satisfying assignments of T are �1, �2 and 0̃ = 11000000.

2Since �1 6= �2, the existence of at least one of the variables xdiff1 and xdiff2 is guaranteed.
3(¬xdiff2 =) xdiff1) ⌘ (xdiff2 _ xdiff1) contains 2 positive literals.
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Algorithm 3: Encode (�1, �2)

1 ⌃ [�1, �2];
2 T  True;
3 TrueLits cmmTrueLits(�1, �2);
4 FalseLits cmmFalseLits(�1, �2);
5 UnCmmLits unCmmLits(�1, �2);
6 tLit TrueLits[0];
7 fLit FalseLits[0];
8 for each i 2 TrueLits \ {tLit} do
9 T  T ^ (xi () xtLit);

10 T  T ^ xtLit;
11 for each i 2 FalseLits \ {fLit} do
12 T  T ^ (xi () xfLit);
13 T  T ^ ¬xfLit;
14 diff1  NULL;
15 diff2  NULL;
16 (diff1, diff2) findSplitV ars(�1, �2);
17 for each i 2 unCmmLits do
18 if val(xi, �1) == 1 then
19 T  T ^ (xi () xdiff1);
20 else
21 T  T ^ (xi () xdiff2);
22 if diff1 6= NULL & diff2 6= NULL then
23 T  T ^ (xdiff1 =) ¬xdiff2);
24 return T ;

3.1.3 Flash

Finally, we present the main algorithm Flash (Algorithm 4). It first draws t many samples

from the sampler G to be tested, as well as from the ideal Uniform-Horn-sampler IU and

stores them in �1 and �2 in Line 9 and Line 10 respectively. Thus, �1 is a set of samples

from the distribution DG('), while �2 is a set of samples drawn according to the uniform

distribution over R', the witness space of '. Then in the for loop of Line 11, it first takes

a sample �1 from �1, and another sample �2 from �2, and calls the subroutine HornKernel

28



with �1, �2 and ' in Line 16. Now Flash obtains M many satisfying assignments of '̂ in

Line 17, and calls the subroutine RemoveZeros in Line 18 to check if there are at least N

many witnesses of �1 and �2 out of the M witnesses obtained in Line 17. If the number of

witnesses of �1 and �2 is less than N , Flash outputs REJECT and terminates the algorithm.

Otherwise, it employs the subroutine Bias in Line 21 in order to determine the fraction of

witnesses obtained from RemoveZeros that are same as �1 when projected on S. If this

fraction is more than T , then it outputs REJECT . If Flash does not output REJECT in

any of the t iterations of the for loop of Line 11, it finally outputs ACCEPT , and declares

that the distribution induced by the satisfying assignments produced by the Horn sampler

G is "-close to the uniform distribution.

Flash has similar flavor to that of Barbarik2 (of [22]). But unlike their algorithm, we

have to carefully handle the fact that the formula '0 on which the sampling algorithm is

run must be a Horn formula. At the same time we have to handle the extra complication

of the fact that the formula '0 returned by the the subroutine HornKernel may have three

satisfying assignments (after projecting on to the support size of '), instead of exactly two

- namely �1 and �2 which was crucially used in the correctness proof of Barbarik2 .

3.2 Theoretical Analysis of Flash

The algorithm Flash is also theoretical sound. If the sampler to be tested is "-additive

almost uniform (AAU) sampler, then Flash outputs ACCEPT with probability at least

(1��). But to prove that Flash outputs REJECT if the sampler that is ⌘-far from the ideal

Uniform-Horn-sampler, we would need an extra assumption on the sampler that is being

tested. We will term this (using the same terminology from [22]) Subquery Consistency of

Sampler.

Definition 3.2.1 (Subquery Consistency of Sampler). Consider any Horn formula '. For
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Algorithm 4: Flash (G, U , S, ", ⌘, �, ')

1 t 
10

⌘(⌘�9") loge
�
1
�

�
;

2 n log
e

�
2t
�

�
;

3 L 
1+"
2 ;

4 H  
1+ ⌘+9"

4

2+ ⌘+9"
4

;

5 T = (H+L)
2 ;

6 N  
8n·H

(H�L)2 ;

7 X  2
�
1�"
3�"

�
;

8 M  

⇣p
n+

p
n+4NX

2X

⌘2

;

9 �1  G(', S, t);
10 �2  IU(', S, t);
11 for i 1 to t do
12 �1  �1[i];
13 �2  �2[i];
14 if �1 == �2 then
15 continue
16 '̂ HornKernel (', �1, �2);
17 �3  G('̂, S,M);

18 b�3  RemoveZeros (�3);

19 if
���b�3

��� < N then

20 return REJECT

21 Bias Bias (�1, b�3, S);
22 if Bias > T then
23 return REJECT
24 return ACCEPT

all S ✓ Supp('), �1,�2 2 R'#S , let b' be the Horn formula obtained from the subroutine

Encode. A Horn sampler G is said to be subquery consistent, if the output of G(b', wt, S,)

is  many independent samples from the distribution DG(')|X , that is, the distribution

DG(') conditioned on the set X, where either X = {�1,�2} or X = {�1,�2, 0̃} depending

on whether 0̃ 2 R' or not.
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Now we move towards proving the formal statement of correctness of Flash . The formal

statement of correctness of Flash is stated below.

Theorem 3.2.2 (Correctness of Flash ). Given a Horn sampler G, a tolerance parameter

" 2 (0, 13 ], an intolerance parameter ⌘ 2 (0, 2], with ⌘ > 9" and a confidence parameter

� > 0, our Uniform-Horn-sampler-tester Flash takes eO( 1
⌘(⌘�9")(⌘�3")2 ) many samples, and

decides the following:

(i) If G is an "-additive almost uniform (AAU) Horn sampler, Flash outputs ACCEPT

with probability at least 1� �.

(ii) If G is ⌘-far from being the ideal Uniform-Horn-sampler and G is subquery consistent,

Flash outputs REJECT with probability at least 1� �.

where, eO(·) hides poly-logarithmic factors in
1

⌘�3" ,
1

⌘�9" ,
1
⌘
, 1
�
.

Completeness Theorem

Theorem 3.2.3 (Completeness). If the Horn sampler G is an "-additive almost-uniform

(AAU) Horn sampler, then Flash outputs ACCEPT with probability at least (1� �).

In order to prove this theorem, we will use the following two lemmas.

Lemma 3.2.4. If G is "-AAU Horn sampler, then when we draw M samples from G('̂, .),

the probability that e0 appears at least (M �N) many times among M samples is at most

�

2t .

Lemma 3.2.5. Given that 0̃ has appeared less than (M �N) times out of the M samples,

the probability that Flash outputs REJECT in each iteration is at most
�

2t .
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Assuming Lemma 3.2.4 and Lemma 3.2.5 hold, now we proceed to prove Theorem 3.2.3.

Proof. Note that Flash (Algorithm 4) outputs REJECT when either number of times 0̃

appears at least (M � N) times among M samples, or when the Bias computed is more

than T . Let us now divide them into two cases as follows:

Case (i): e0 appears at least (M �N) times among M samples from G.

Case (ii): Bias > T as determined in Line 21.

From Lemma 3.2.4, we know that the probability of Case (i) is at most �

2t . Also, by

Lemma 3.2.5, we know the probability of Case (ii) is at most �

2t as well. So, combining both

Case (i) and Case (ii), we can say that with probability at most �

t
, Flash outputs REJECT

in any iteration. Since there are t many iterations of Flash , the probability that Flash

outputs ACCEPT is at least (1� �

t
)t � 1� �. This completes the proof of Theorem 3.2.3.

Now we proceed to prove Lemma 3.2.4.

Proof of Lemma 3.2.4. Let us define the following binary random variable:

Yj =

8
<

:
1 if �3[j] = 0̃

0 otherwise

Since G is "-AAU, from Definition 2.1.6 we can say that

PG('̂, S,e0)
PG('̂, S,�1)


1 + "

1� "
(3.1)
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Similarly, we have
PG('̂, S,e0)
PG('̂, S,�2)


1 + "

1� "
(3.2)

Thus, noting the fact that, PG('̂, S,�1) + PG('̂, S,�2) + PG('̂, S,e0) = 1,

E[Yj ] = PG(Yj = 1)

= PG('̂, S,e0)

=
PG('̂, S,e0)

PG('̂, S,�1) + PG('̂, S,�2) + PG('̂, S,e0)


1 + "

3� "
(3.3)

Where the last inequality follows from the fact that if a

c
< l

m
and a

c
< l

n
, then a

b+c
< l

m+n

and a

a+b+c
< l

l+m+n
, along with Equation (3.1) and Equation (3.2).

Now consider the random variable Y defined as Y =
MP
j=1

Yj . Following Equation (3.3),

we can say that, E[Y ]  1+"
3�"M .

Applying Cherno↵ bound 2.3.2, we can say that the probability that Y is more than

(M �N) is P (Y > M �N)  �

2t . Thus, with probability at least
�
1� �

t

�
, e0 appears less

than (M �N) many times among M samples obtained from G in Line 17 of Flash .

Proof of Lemma 3.2.5. Consider the case when the count of e0 appears less than (M �N)

times out of the M samples obtained from the sampler G in Line 17 of the algorithm Flash

. Now, recall the set b�3 from Flash that contains only �1 and �2 after removing all 0̃ from

�. Let us define the following binary random variable Zi for each sample j of b�3.

Zj =

8
<

:
1 if b�3[j]#S = �1

0 if b�3[j]#S = �2
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So, the expected value of Zj is given by

E[Zj ] =
PG(b', S,�1)

PG(b', S,�1) + PG(b', S,�2)

As G is "-AAU, we can say that

PG(b', S,�1)
PG(b', S,�2)


1 + "

1� "

Thus, E[Zj ] 
1+"
2 . We set L = 1+"

2 in the algorithm Flash .

Note that Bias is computed as follows in Line 21 of Flash :

Bias =
X

j2[|b�3|]

(b�3[j]#S = �1)

(b�3[j]#S = �1) + (b�3[j]#S = �2)
=

X

j2|b�3|

Zj���c�3

���

So, the probability that Bias > T is given by:

P(Bias > T |

���b�3

��� � N) = P(
X

j2|b�3|

Zj���c�3

���
> T |

���b�3

��� � N)

 exp

✓
�
(H � L)2N

8H

◆


�

t

Soundness Theorem

Theorem 3.2.6 (Soundness). If G is ⌘-far from being the ideal Uniform-Horn-sampler IU

and G is subquery consistent, Flash outputs REJECT with probability at least 1� �.
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Before proceeding to prove Theorem 3.2.6, let us first partition the set R', the set of

satisfying assignments of ' into the following subsets:

• W�1 = {x 2 R' : PG(', x) 
1
N
}

• W0 = {x 2 R' : 1
N

< PG(', x) <
⇣
1 + ⌘+9"

4

⌘
1
N
}

• W1 = {x 2 R' :
⇣
1 + ⌘+9"

4

⌘
1
N
 PG(', x)}

Lemma 3.2.7. If G is ⌘-far from the ideal Uniform-Horn-sampler IU , then

P (Bias > T | (�1 2W1 ^ �2 2W�1)) �
4

5

Lemma 3.2.8. If the sampler G is ⌘-far from the ideal Uniform-Horn-sampler IU , then

P (�1 2W1 ^ �2 2W�1) �
⌘(⌘ � 9")

8

Assuming Lemma 3.2.7 and Lemma 3.2.8 hold, we are now ready to prove Theo-

rem 3.2.6.

Proof of Theorem 3.2.6. Let us first define the following events:

E1 := �1 2W1 ^ �2 2W�1

E2 := Bias > T in an iteration

So, following Lemma 3.2.7 and Lemma 3.2.8, we can say that:

P(E2) = P(E2 | E1)P(E1) �
4

5

⌘(⌘ � 9")

8
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Thus, the probability that Flash returns REJECT is:

P (Flash returns REJECT ) � 1�

✓
1�

⌘(⌘ � 9")

10

◆
t

As t = 10
⌘(⌘�9") loge

1
�
, when G is ⌘-far from the Uniform-Horn-sampler IU , Flash rejects

G with probability at least 1� �. This completes the proof of Theorem 3.2.6.

Proof of Lemma 3.2.7. Consider the case when �1 2 W1 and �2 2 W�1. From the defini-

tion of W1, we know that PG(',�1) �
⇣
1 + ⌘+9"

4

⌘
1
N
. Also, from the definition of W , we

can say that PG(',�2) <
1
N
. So, we can say that PG(',�1) �

⇣
1 + ⌘+9"

4

⌘
PG(',�2).

Assuming the subquery consistency property of G, along with the fact that b�3 contains

only �1 and �2, we can say that

PG('̂, S,�1) =
PG(', S,�1)

PG(', S,�1) + PG(', S,�2)
�

1 + ⌘+9"
4

2 + ⌘+9"
4

As H =
1+ ⌘+9"

4

2+ ⌘+9"
4

, applying Cherno↵ bound, we can say that,

P(Bias  T | �1 2W1 ^ �2 2W�1) 
1

5

So, the proof of the lemma follows.

Proof of Lemma 3.2.8. Since G is ⌘-far from the Uniform-Horn-sampler IU , we can say
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that
X

x2W

✓
PG(', x)�

1

N

◆
=

X

x2W�1

✓
1

N
� PG(', x)

◆
�
⌘

2
(3.4)

Therefore from Equation (3.4),
|W�1|

N
�
⌘

2
(3.5)

Now,
P

x2W0

�
PG(', x)�

1
N

�


P
x2W0

⌘+9"
4

1
N

< ⌘+9"
4

Thus,
X

x2W1

PG(', x) �
⌘

2
�
⌘ + 9"

4
�
⌘ � 9"

4
(3.6)

Hence, from the independence of �1 and �2 we have proven the Lemma from Equa-

tion (3.5) and Equation (3.6).

Sample Complexity of Flash

Theorem 3.2.9. The sample complexity of Flash is eO( 1
⌘(⌘�9")(⌘�3")2 ), where eO(·) hides

poly-logarithmic factor in
1
⌘
, 1
⌘�3" ,

1
⌘�9" , and

1
�
.

Proof. We first note that Flash takes t samples from G and the ideal Uniform-Horn-sampler

IU in Line 9 and Line 10 respectively. Thereafter, in each iteration of the for loop starting

from Line 11, it takes M samples from G in Line 17. Since the loop runs for t iterations,

the sample complexity is 2t+Mt, which is at most 2Mt. Below, we will bound the value

of 2Mt.

First, we see that N = 8nH
(H�L)2 . As H =

1+ ⌘+9"
4

2+ ⌘+9"
4

, and L = 1+"
2 , we can say that

N  8
log 2t

�
(⌘�3")2 .
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As M =
⇣p

n+
p
n+4NX

2X

⌘2


n+4NX

X2 , X = 2
⇣
1�"
3�"

⌘
, we can say that

2Mt  2t

✓
log

2t

�

1

X2
+

4N

X

◆

 2t

✓
log

2t

�
· 6 + 32 log

2t

�

1

(⌘ � 3")2

◆

= eO
✓

1

⌘(⌘ � 9")(⌘ � 3")2

◆
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Chapter 4

Tester for General Horn Sampler

In this chapter, we shall describe our tester wFlash for Weighted-Horn-samplers. Follow-

ing the organisation of previous chapter, in this chapter again we shall describe first the

methodology of wFlash in section 4.1 and then will provide the correctness proof of wFlash

and determine the sample complexity in section 4.2.

4.1 Methodology of wFlash

In this section, we describe the algorithmic framework of wFlash , to test the ideality of

a black-box Weighted-Horn-samplerG. wFlash takes as input a black-box Horn sampler G

(which is to be tested), access to an ideal Horn sampler IW , a Boolean formula ' along with

corresponding weight function wt, and three parameters ", ⌘, �, such that " 2 (0, 13 ], ⌘ � 9",

and � > 0, and if G is ⌘-far from IW , then with probability at least (1 � �), it outputs

REJECT and if G is "-close to IW , it outputs ACCEPT with probability at least (1� �).

Our main result here is stated as follows:
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Theorem 4.1.1 (Correctness of wFlash ). Given a Weighted-Horn-sampler G, an ideal

Weighted-Horn-sampler IW , a tolerance parameter " 2 (0, 13 ], an intolerance parameter ⌘ >

0, with ⌘ > 9" and a confidence parameter � > 0, and an arbitrary but fixed weight function

wt, our Weighted-Horn-sampler-tester wFlash takes eO( tilt(wt,')3

⌘(⌘�9")(⌘�3")2 ) many samples, and

decides the following:

(i) If G is "-close to the Weighted-Horn-sampler IW , wFlash outputs ACCEPT with

probability at least 1� �.

(ii) If G is ⌘-far from the Weighted-Horn-sampler IW , wFlash outputs REJECT with

probability at least 1� �.

where tilt(wt,') denotes the maximum ratio between any two satisfying assignments

of ' with respect to the weight function wt, and eO(·) hides poly-logarithmic factors in

1
⌘
, 1
⌘�3" ,

1
⌘�9" , and

1
�
.

Let us assume that the distribution generated by G(') is denoted by DG('). In order

to test whether G is "-close or ⌘-far from IW , one might need to draw exponentially many

samples from IW and G. However, wFlash uses the conditional sampling paradigm to handle

this situation. In each iteration, it takes a sample �1 drawn from G and another sample

�2 drawn from IW and infers about the similarity between �1 and �2 in an e↵ective way.

To achieve this, it draws samples from the conditional distribution DG(')|{�1,�2}. However,

note that we do not actually have any direct access to such distribution. Here we use the

HornKernel subroutine, that takes as input a formula ', two satisfying assignments �1 and

�2 and returns a formula '̂ such that, either DG('̂) ⇡ DG(')|{�1,�2} or DG('̂) ⇡ D
G(')|{�1,�2,0̃}

(this depends on whether 0̃ is a satisfying assignment of ').

The main idea of wFlash is that, if G is ⌘-far, then with high probability we receive

�1 and �2 in an iteration such that they are far apart according to the distribution DG(')
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(that is, the distance between PG(',�1) and PG(',�2) from PIW (',�1) and PIW (',�2) is

significantly large and thus can be di↵erentiated by wFlash ). To estimate this di↵erence

between �1 and �2, we draw enough samples (N many) from DG('̂). However, while drawing

samples from DG('̂), it might be the case that many of the N drawn samples are 0̃, which

lowers the success probability of wFlash to infer about ideality of G. So, we keep on drawing

samples from DG('̂), until we get N many �1 and �2, upto M samples. Here, we set M

in such a way that, if G is "-close to ideal sampler, then with high probability we will get

at least N many �1 and �2 from the M drawn samples. So, if wFlash receives more than

M �N many 0̃, it returns REJECT without any further processing. Otherwise, it moves

forward to check the similarity of �1 and �2 by applying the Bias subroutine. Finally, the

algorithm returns REJECT if the Bias returned by the Bias subroutine is more than T ,

where T is a carefully chosen parameter.

Remark 4.1.2. One should note that, unlike Flash , in wFlash we cannot fix N and M

beforehand, rather one has to reconsider the values of N and M in every iteration of

wFlash . This is due to the fact that the weights of each assignment �1 and �2 changes

as �1 and �2 alters, and consecutively, weight of 0̃ alters in each of the t-many iterations.

Thus we need to carefully determine the number of samples N needed to determine the

bias properly and the number of total samples M needed to rule out enough many 0̃. Also

note that, both of these values N , M depends upon the weights of �1 and �2.

4.2 Theoretical Analysis of wFlash

Let us start by restating the theorem corresponding to our Weighted-Horn-sampler-tester

wFlash .

Theorem 4.1.1 (Correctness of wFlash ). Given a Weighted-Horn-sampler G, an ideal

Weighted-Horn-sampler IW , a tolerance parameter " 2 (0, 13 ], an intolerance parameter ⌘ >
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Algorithm 5: wFlash (G, IW , S, ", ⌘, �, ')

1 t 
10

⌘(⌘�9") loge
�
1
�

�
;

2 n log
e

�
2t
�

�
;

3 lo 
1+"
1�" , hi 1 + ⌘+9"

4 ;

4 �1  G(', S, t);
5 �2  IW(', S, t);
6 for i 1 to t do
7 �1  �1[i], �2  �2[i];
8 if �1 == �2 then
9 continue

10 ↵ 
wt(�1)
wt(�2)

;

11 L 
↵·lo

1+↵·lo , H  
↵·hi

1+↵·hi ;

12 T = (H+L)
2 ;

13 N  
8n·H

(H�L)2 ;

14 X  

⇣
(1�")(wt(�1)+wt(�2))

(1�")(wt(�1)+wt(�2))+(1+")wt(0̃)

⌘
;

15 M  

⇣p
n+

p
n+4NX

2X

⌘2

;

16 '̂ HornKernel (', �1, �2);
17 �3  G('̂, S,M);

18 b�3  RemoveZeros (�3);

19 if
���b�3

��� < N then

20 return REJECT

21 Bias Bias (�1, b�3, S);
22 if Bias > T then
23 return REJECT
24 return ACCEPT

0, with ⌘ > 9" and a confidence parameter � > 0, and an arbitrary but fixed weight function

wt, our Weighted-Horn-sampler-tester wFlash takes eO( tilt(wt,')3

⌘(⌘�9")(⌘�3")2 ) many samples, and

decides the following:

(i) If G is "-close to the Weighted-Horn-sampler IW , wFlash outputs ACCEPT with

probability at least 1� �.
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(ii) If G is ⌘-far from the Weighted-Horn-sampler IW , wFlash outputs REJECT with

probability at least 1� �.

where tilt(wt,') denotes the maximum ratio between any two satisfying assignments

of ' with respect to the weight function wt, and eO(·) hides poly-logarithmic factors in

1
⌘
, 1
⌘�3" ,

1
⌘�9" , and

1
�
.

Completeness Property of wFlash

Theorem 4.2.1 (Completeness Theorem). If the Horn sampler G is "-close to an ideal

Weighted-Horn-sampler IW , then with probability at least (1� �), wFlash will output AC-

CEPT .

Proof of Theorem 4.2.1. To begin with, first note that, the algorithm of wFlash runs the

for loop for t many times. To prove the Theorem 4.2.1, we will first show that if we have

a Horn sampler G which is "-close to an ideal Weighted-Horn-sampler IW , then wFlash

outputs REJECT in some i-th iteration of t loops with probability at most �/t. Using

the union bound, the proof follows. We divide the proof of the completeness theorem into

Lemma 4.2.2 and Lemma 4.2.3.

The proof of Theorem 4.2.1 follows by first proving that if G is "-close to an ideal

Weighted-Horn-sampler IW , then if we draw M samples from G('̂, .), with probability at

least (1� �/2t), we will receive at least N samples from the set {�1,�2}. Then we have to

show that if we receive N many samples from {�1,�2}, then the probability that G outputs

REJECT in each iteration of wFlash is at most �/2t.

Lemma 4.2.2. If the sampler G is "-close to the ideal Weighted-Horn-sampler IW , then

when we draw M samples from G('̂, .), the probability that e0 appears at least (M � N)

many times among M samples is at most
�

2t .
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Lemma 4.2.3. Given that 0̃ has appeared less than (M �N) times out of the M samples,

the probability that wFlash outputs REJECT in any iteration is at most
�

2t .

Assuming Lemma 4.2.2 and Lemma 4.2.3 hold, we now prove Theorem 4.2.1 as follows:

First note that '̂ has three satisfying assignments: {�1,�2, 0̃} when projected onto the

support set S. In each iteration, we are drawing M samples from G('̂, .). We now define

an index set I on �3 as follows:

I =
�
j | �3[j]#S 6= 0̃

 

Note that there are two possibilities when wFlash outputs REJECT . They are the

following:

Case (i) When we draw M samples in Line 17 of wFlash (Algorithm 5), we obtain more

than (M �N) many 0̃, that is, |I| < N . In this case, wFlash outputs REJECT .

Case (ii) When we draw M samples and get more than N samples from the set {�1,�2}

(that is, |I| � N), but the Bias estimated by the Bias subroutine exceeds the

threshold T .

So, the probability that wFlash outputs REJECT in an iteration, is given by,

P (|I| < N) + P (Bias > T | |I| � N) · P (|I| � N)


�

2t
+
�

2t
· 1

=
�

t
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The first term in the first line corresponds to Case (i), while the second term corre-

sponds to Case (ii) discussed above. The first inequality follows from Lemma 4.2.2 and

Lemma 4.2.3.

Since the probability that wFlash outputs REJECT in some i-th iteration is at most

�

t
, then the probability that wFlash does not REJECT in any of the t iterations is at least

(1 � �

t
)t � 1 � �. So, when the sampler G is "-close to the ideal Weighted-Horn-sampler

IW , the algorithm wFlash outputs ACCEPT with probability at least 1� �.

Proof of Lemma 4.2.2. Recall from the Algorithm 5 in Line 17, we sample M many sam-

ples from '̂, which are contained in �3. So �3 consists of witnesses from the set {�1, �2,

0̃}. Let us first define the following binary random variable,

Zj =

8
<

:
1 if �3[j] = 0̃

0 otherwise

Now, since the sampler G is "-close to an ideal Weighted-Horn-sampler IW by our assump-

tion, so we have the following inequalities,

PG('̂, S, 0̃)

PG('̂, S,�1)


(1 + ")PIW ('̂, S, 0̃)

(1� ")PIW ('̂, S,�1)
(4.1)

PG('̂, S, 0̃)

PG('̂, S,�2)


(1 + ")PIW ('̂, S, 0̃)

(1� ")PIW ('̂, S,�2)
(4.2)
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As PG('̂, S,�1) + PG('̂, S,�2) + PG('̂, S, 0̃) = 1, we can say that:

E[Zj ] = P (Zj = 1)

= PG

�
'̂, S, 0̃

�

=
PG

�
'̂, S, 0̃

�

PG('̂, S,�1) + PG('̂, S,�2) + PG('̂, S, 0̃)


(1 + ")PIW

�
'̂, S, 0̃

�

(1� ")PIW ('̂, S,�1) + (1� ")PIW ('̂, S,�2) + (1 + ")PIW

�
'̂, S, 0̃

�

=
(1 + ")PIW

�
', S, 0̃

�

(1� ")PIW (', S,�1) + (1� ")PIW (', S,�2) + (1 + ")PIW

�
', S, 0̃

�

The inequality in fourth line follows due to the fact that if a

c
< l

m
and a

c
< l

n
, then

a

b+c
< l

m+n
and a

a+b+c
< l

l+m+n
, along with Equation (4.1) and Equation (4.2).

Now we define the random variable Z as Z =
|M |P
j=1

Zj . Following the expression of E[Zj ],

we can say the following:

E[Z] 
(1 + ")PIW

�
', S, 0̃

�
M

(1� ")PIW (', S,�1) + (1� ")PIW (', S,�2) + (1 + ")PIW

�
', S, 0̃

�

=
(1 + ")wt

�
0̃
�
M

(1� ")wt (�1) + (1� ")wt (�2) + (1 + ")wt
�
0̃
�

Let us define ⌧ as ⌧ = (1 � ")wt (�1) + (1 � ")wt (�2) + (1 + ")wt
�
0̃
�
. As M =

⇣p
n+

p
n+4NX

2X

⌘2
, where n = log 2t

�
, and X =

⇣
(1�")wt(�1)+(1�")wt(�2)

⌧

⌘
, we have M =

N+E[Z]+
p
Mn. Applying Lemma 2.3.2, we can say that P (|I| < N) = P (Z > M �N) =

P
⇣
Z > E[Z] +

p
Mn

⌘


�

2t , and the lemma follows.
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Proof of Lemma 4.2.3. When M samples drawn from the sampler G in Line 17, if at least

N many samples belong to the set {�1, �2}, then wFlash outputs REJECT if and only if

Bias is more then T . Let us now consider an iteration j among the t iterations of wFlash

. Recall the set I on �3 defined as I =
�
j | �3[j]#S 6= 0̃

 
. Consider the following binary

random variable Yj with j 2 I defined as follows:

Yj =

8
<

:
1 if b�3[j]#S = �1

0 if b�3[j]#S = �2

Then, we have the expected value of Yj given by,

E[Yj ] =
PG('̂, S,�1)

PG('̂, S,�1) + PG('̂, S,�2)
(4.3)

Since G is "-close to ideal Weighted-Horn-sampler IW , from Definition 2.1.6, we can

say that:
PG('̂, S,�1)

PG('̂, S,�2)


(1 + ")PIW ('̂, S,�1)

(1� ")PIW ('̂, S,�2)
(4.4)

Following the facts that PIW ('̂, S,�1) =
PIW (',S,�1)

PIW (',S,�1)+PIW (',S,�2)+PIW (',S,0̃)
and PIW ('̂, S,�2) =

PIW (',S,�2)

PIW (',S,�1)+PIW (',S,�2)+PIW (',S,0̃)
, from Equation (4.3) and Equation (4.4), we can say the

following:

E[Yj ] 
(1 + ")PIW ('̂, S,�1)

(1 + ")PIW ('̂, S,�1) + (1� ")PIW ('̂, S,�2)

=
(1 + ")PIW (', S,�1)

(1 + ")PIW (', S,�1) + (1� ")PIW (', S,�2)

=
(1 + ")wt(�1)

(1 + ")wt(�1) + (1� ")wt(�2)
= L

The first inequality follows due to the fact that if a

b
< l

m
, then a

a+b


l

l+m
, where

a, b, l,m 2 R.
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Now, Bias is calculated in wFlash as follows:

Bias =
X

j2[M ]

I(b�3[j]#S = �1)

I(b�3[j]#S = �1) + I(b�3[j]#S = �2)
=
X

j2I

Yj
|I|

Now given that |I| � N , we can apply the Cherno↵ bound (Lemma 2.3.4) as follows:

P(Bias > T | |I| � N) = P

0

@
X

j2I

Yj
|I|

> T

���� |I| � N

1

A

< exp

✓
�
(T � L)2N

2L

◆
= exp

✓
�
(H � L)2N

8L

◆

 exp

✓
�
(H � L)2N

8H

◆


�

2t

Soundness Property of wFlash

Theorem 4.2.4 (Soundness Theorem). If the Horn sampler G is subquery consistent with

respect to HornKernel and is ⌘-far from an ideal Weighted-Horn-sampler IW , then with

probability at least (1� �), wFlash will output REJECT .

Proof. Let us first partition the set of witnesses of ' into the following three disjoint sets

as follows:

• W�1 = {x 2 R' : PG(', x)  PIW (', x)}

• W0 = {x 2 R' : PIW (', x) < PG(', x) <
⇣
1 + ⌘+9"

4

⌘
PIW (', x)}

• W1 = {x 2 R' :
⇣
1 + ⌘+9"

4

⌘
PIW (', x)  PG(', x)}
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Now, we will show that if we receive �1 from W1 and �2 from W�1, then wFlash will

output REJECT with high probability. In order to prove this, we need the following two

lemmas.

Lemma 4.2.5. If the sampler G is ⌘-far from the ideal Weighted-Horn-sampler IW , then

P (Bias > T | (�1 2W1 ^ �2 2W�1)) �
4

5

Lemma 4.2.6. If the sampler G is ⌘-far from the ideal Weighted-Horn-sampler IW , then

P (�1 2W1 ^ �2 2W�1) �
⌘(⌘ � 9")

8

So, from Lemma 4.2.5 and Lemma 4.2.6, we can estimate the probability of rejection

of wFlash in an iteration as follows:

P (Bias > T )

= P (Bias > T | (�1 2W1 ^ �2 2W�1)) · P (�1 2W1 ^ �2 2W�1)

�

✓
4

5

◆
⌘(⌘ � 9")

8

Thus, the probability that wFlash returns REJECT for is given by:

1�
Y

i2[t]

P(Bias < T in i-th iteration) � 1�
Y

i2[t]

✓
1�

⌘(⌘ � 9")

10

◆

= 1�

✓
1�

⌘(⌘ � 9")

10

◆
t

� 1� �
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Proof of Lemma 4.2.5. Assuming, �1 2 W1 and �2 2 W�1, we can obtain the following

inequality

PG(', S,�1)

PG(', S,�2)
�

✓
1 +

⌘ + 9"

4

◆
·
PIW (', S,�1)

PIW (', S,�2)

=

✓
1 +

⌘ + 9"

4

◆
·
wt(�1)

wt(�2)

Thus, assuming the subquery consistent property of sampler G, along with the fact

that b�3 contains only �1 and �2, we can say the following:

PG('̂, S,�1) =
PG(', S,�1)

PG(', S,�1) + PG(', S,�2)

�

✓
1 +

⌘ + 9"

4

◆
·
wt(�1)

wt(�2)
·

✓
1 +

✓
1 +

⌘ + 9"

4

◆
·
wt(�1)

wt(�2)

◆�1

= H

Thus,

P (Bias  T in i-th iteration | (�1 2W1 ^ �2 2W�1))

 exp

✓
�
(H � L)2N

8H

◆


�

2t
[applying Cherno↵ bound 2.3.4]


1

5
[as � < 0.5 and t � 2]

So, the probability that wFlash returns REJECT when �1 2W1 and �2 2W�1 is,

P (Bias > T in i-th iteration | (�1 2W1 ^ �2 2W�1)) �
4

5
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Proof of Lemma 4.2.6. Since the sampler G is ⌘-far from the ideal Weighted-Horn-sampler

IW , then for input ', the `1 distance between DG(') and DIW (') is at least ⌘. Thus,

X

x2W0[W1

(PG(', x)� PIW (', x)) =
X

x2W�1

(PIW (', x)� PG(', x)) �
⌘

2
(4.5)

Therefore from Equation (4.5),

X

x2W�1

PIW (', x) �
⌘

2
(4.6)

Now, from the definition of W0, we have,

X

x2W0

(PG(', x)� PIW (', x)) <
⌘ + 9"

4

X

x2W0

PIW (', x) <
⌘ + 9"

4

Hence, we have:

X

x2W1

(PG(', x)� PIW (', x)) �
⌘

2
�
⌘ + 9"

4
=
⌘ � 9"

4

Therefore,
X

x2W1

PG(', x) �
⌘

2
�
⌘ + 9"

4
=
⌘ � 9"

4
(4.7)

Since the events �1 2 W1 and �2 2 W�1 are independent, from Equation 4.6 and

Equation 4.7, we can say that

P (�1 2W1 ^ �2 2W�1) �
⌘(⌘ � 9")

8
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Sample Complexity of wFlash

Theorem 4.2.7. The sample complexity of wFlash is eO( tilt(',wt)3

⌘(⌘�9")(⌘�3")2 ), where tilt de-

notes the maximum weight between any two satisfying assignments, where eO(·) hides poly-

logarithmic factor in
1
⌘
, 1
⌘�9" ,

1
⌘�3" , and

1
�
.

Proof. For ease of presentation, we will represent tilt(', wt) as tilt. Note that wFlash

(Algorithm 5) takes t samples in the for loop in Line 4. Also, it takes M samples in Line 5

in each iteration of the for loop. So, wFlash takes 2t +Mt samples from G, which can be

at most 2Mt. Now, we find an upper bound of 2Mt below.

Note that

1

X
= 1 +

(1 + ")wt(e0)
(1� ")(wt(�1) + wt(�2))

= 1 +
1 + "

1� "

1
wt(�1)

wt(e0) + wt(�2)

wt(e0)

 1 +
1 + "

1� "

tilt

2

 1 + tilt (* " 
1

3
)

 2 tilt (* 1  tilt)
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Note that N = 8 log 2t
�

H

(H�L)2  8 log 2t
�

⇣
tilt

(⌘�3")

⌘2
. Thus, we can say that

2Mt = 2t

✓
log

2t

�

1

X2
+

4N

X

◆

 2t

✓
log

2t

�
· 4 tilt

2 + 32 log
2t

�

tilt
3

(⌘ � 3")2

◆

 eO
✓
t ·

tilt
3

(⌘ � 3")2

◆

 eO
✓

tilt
3

⌘(⌘ � 9")(⌘ � 3")2

◆

So, the total sample complexity of wFlash is eO
⇣

tilt3

⌘(⌘�9")(⌘�3")2

⌘
. This completes the

proof of Theorem 4.2.7.
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Chapter 5

Evaluation Results

The main objective of our work is to evaluate the two following questions:

RQ1 Can Flash and wFlash check if of-the-shelf samplers are "-close or ⌘-far from ideal

samplers?

RQ2 What kind of improvements are possible over the baseline?

To evaluate the practical e↵ectiveness of Flash and wFlash , we implemented the pro-

totypes of Flash and wFlash in Python 3.8.3. All the experiments are carried out on

a high-performance computer cluster, where each node consists of E5-2690 v3 @2.60GHz

CPU with 24 cores and 4GB memory per core. For each benchmark-sampler pair, one sin-

gle core is being employed with a maximum time limit of 23 hrs 50 minutes. The detailed

logs and the runtime code employed to run the experiments are given in the supplementary

material.
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5.1 Samplers Tested

To remain consistent with prior works, we follow the setup described in Barbarik and

Barbarik2 . We employ the following state of the art samplers: UniGen3 [27], QuickSam-

pler [17], STS [18] 1. For experiments with Weighted-Horn-sampler-tester, we augment

these samplers with an inverse sampling module 2. We shall term the newly generated

samplers as wUniGen, wQuickSampler, wSTS respectively in Table 5.2. Further-

more, while implementing Flash (resp. wFlash ), our algorithm requires the access of a

known ideal Uniform-Horn-sampler IU (resp. ideal Weighted-Horn-sampler IW) before-

hand. We use SPUR [1] as the corresponding ideal Uniform-Horn-sampler, and augment

it by inverse sampling to achieve ideal Weighted-Horn-sampler needed for wFlash .

5.2 Test Parameters

For both of our experiments with Flash and wFlash , the tolerance parameter ", intolerance

parameter ⌘, and confidence parameter � are set to be 0.1, 1.6, and 0.1 respectively. This

implies that both Flash and wFlash outputs ACCEPT when the sampler G to be tested is

"-close to the ideal Uniform-Horn-sampler and ideal Weighted-Horn-sampler respectively

with probability at least 1� �. Similarly, with probability at least 1� �, Flash and wFlash

outputs REJECT when G is ⌘-far from ideal Uniform-Horn-sampler and ideal Weighted-

Horn-sampler respectively.

1We use the default parameters for Quicksampler, STS and UniGen, which were employed
in the previous studies[9][22] to maintain the consistency of the experiments.

2Inverse sampling, basically, converts the (', wt) pair to another formula '̂ which preserves the
distribution of the satisfying assignments.
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5.3 Benchmarks

Our benchmark suites consist of formulas arising from the reliability computation of power

transmission networks in US cities [16]. For weighted sampler testing, we only consider

log-linear distributions. They plays a crucial role in several machine learning algorithms. A

formal discussion on log-linear distribution is presented in the supplementary material. In

particular, the weight functions for log-linear distributions can be specified using weights

on literals. For each of the benchmark instances of unweighted Horn formulas, we designed

two sets of weight functions and thus, we procured two sets of benchmarks as depicted in

Table 5.2. In both these benchmarks, we sample a set of literals from the support set and

have random nontrivial weights 3 for the sampled literals and assign weight 0.5 to rest of

the literals. For the first set of benchmarks, (presented in the top half of Table 5.2), we

pick each literal with probability 1/3, while for the second set of benchmarks, we uniformly

sample a constant (12) number of literals. Note that assigning the weights of all the literals

as 0.5 is equivalent to uniform sampling.

5.4 Description of the Tables

Table 5.1 and Table 5.2 depict our experiments of Flash and wFlash respectively. The

2nd and 3rd columns of the Table 5.1 indicate the number of variables and clauses in

the benchmark instances. In the 4th, 5th and 6th columns of Table 5.1 , we present the

experimental results of Flash on UniGen, QuickSampler and STS respectively. In the

2nd, 3rd and 4th columns of Table 5.2, we present the experimental results of wFlash

on wUniGen, wQuickSampler and wSTS respectively. In each of these cells, A and

R indicate whether the output of Flash was ACCEPT or REJECT respectively, and the

3Non-trivial weights are of the form k/2m. We have chosen m = 4 and k is set randomly to
either 7 or 9.

56



number on the right indicates the number of samples drawn by the tester in that instance.

DNS denotes the situation where the sampler-under-test has failed to sample any sample

during the period of run-time, and TLE denotes the situation where wFlash is unable to

complete the test within the time limit of the experiment. It is worth noting that DNS

is caused due to the failure of the sampler-under-test to draw satisfying assignments from

a formula. But TLE indicates a combined failure of both the sampler-under-test and our

verification algorithm.

UniGen QuickSampler STS
Benchmark o/p #Samples o/p #Samples o/p #Samples

Net6 count 91 A 218505 R 52025 R 20810
Net8 count 96 A 218505 R 166480 R 31215
Net12 count 106 A 218505 R 72835 R 52025
Net22 count 116 A 218505 R 72835 R 41620
Net27 count 118 A 218505 R 72835 R 10405
Net29 count 164 A 218505 R 114455 R 20810
Net39 count 240 A 218505 R 114455 R 114455
Net43 count 243 A 218505 R 93645 R 114455
Net46 count 322 A 218505 R 10405 R 10405
Net52 count 362 A 218505 R 10405 R 20810
Net53 count 339 A 218505 R 31215 R 72835

Table 5.1: Evaluation results of Flash

Detailed Results

RQ1 From our experiments, we find that in all the 11 benchmark instances, Flash outputs

REJECT for STS and QuickSampler. On the other hand, Flash outputs ACCEPT for

UniGen in all 11 instances. In this context, it is worth highlighting that the samplers STS

and QuickSampler are designed based on heuristic techniques, while Unigen has sound

theoretical guarantees.

Out of the 22 instances, wFlash outputs REJECT in all the instances of wSTS. When

run with wQuickSampler, wFlash outputs REJECT in 21 instances, while it outputs

57



wUniGen wQuickSampler wSTS
Benchmark o/p #Samples o/p #Samples o/p #Samples

Net6 count 91 w1 TLE - R 106910 R 15626
Net8 count 96 w1 TLE - R 22716 R 39944

Net12 count 106 w1 TLE - R 27428 R 41334
Net22 count 116 w1 DNS - R 98629 R 9217
Net27 count 118 w1 DNS - R 49654 R 25296
Net29 count 164 w1 DNS - R 123202 R 12322
Net39 count 240 w1 DNS - R 7745 R 7922
Net43 count 243 w1 DNS - R 209062 R 22351
Net46 count 322 w1 DNS - R 23105 R 7922
Net52 count 362 w1 DNS - R 6085 R 8650
Net53 count 339 w1 DNS - R 38417 R 23105
Net6 count 91 w2 A 274175 R 17667 R 26995
Net8 count 96 w2 A 397169 A 388885 R 16385

Net12 count 106 w2 A 197713 R 6085 R 5930
Net22 count 116 w2 A 302546 R 22947 R 24561
Net27 count 118 w2 TLE - R 10405 R 26245
Net29 count 164 w2 A 238673 R 7226 R 17706
Net39 count 240 w2 A 282138 R 13690 R 14885
Net43 count 243 w2 TLE - R 238260 R 9217
Net46 count 322 w2 A 437529 R 135368 R 30819
Net52 count 362 w2 TLE - R 210925 R 23127
Net53 count 339 w2 A 191806 R 8650 R 9605

Table 5.2: Evaluation results of wFlash

ACCEPT in 1 instance. When wFlash is run with wUniGen, wFlash outputs ACCEPT

for 8 instances, while there are 6 cases of TLE and 8 instances of DNS. For these instances

wFlash had demanded a very high volume of samples that wUniGen failed to provide

within the given time limit.

RQ2 The number of samples required by the baseline approach, following the work of

Batu et.al [5], is extremely high. We estimate the average time taken by a sampler for

particular instances of our benchmarks. Using our estimate, we observe that the time

taken by our baseline would be over 1012 seconds for all 11 benchmarks for UniGen, STS

and Quicksampler. In this context, it is worth highlighting that Flash terminates within

24 hours for all the instances for all the samplers - hence the have massive (over 107) speed

up in the runtime compared to the baseline for all the instances of the benchmark.
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5.5 Extended Experimental Results

In this section, we describe the extended experimental results of our Uniform-Horn-sampler-

tester Flash and Weighted-Horn-sampler-tester wFlash . As mentioned previously, we will

use DNS to denote the situation where sampler-under-test has failed to sample during the

time period, and TLE to denote when the tester has not been able to complete the test

within the time limit of the experiment. For each benchmark-sampler pair, one single core

is being employed with a maximum time limit of 23 hrs 50 minutes, where the experiments

have been carried out on a high-performance computer cluster, where each node consists

of E5-2690 v3 @2.60GHz CPU with 24 cores and 4GB memory per core.

We also computed the model count, that is, the number of satisfying assignments

of the benchmark Horn formulas using the tool sharpSAT [29]. We would like to point

out that as we are using the same set of benchmarks for the Horn samplers UniGen,

QuickSampler, and STS, the model count remains same in all the tables corresponding

to the Uniform-Horn-sampler-tester Flash . Moreover, in the evaluation of our Weighted-

Horn-sampler-tester wFlash , as we are considering the same 11 benchmark instances with

respect to two di↵erent weight functions, model count of the benchmark instances remain

same there as well. For completeness purpose, we are presenting them in each table.

5.5.1 Results of our Uniform-Horn-sampler-tester Flash

Here we present the extended results of our Uniform-Horn-sampler-tester Flash . For base-

line, we employed the tester from [3, 24]. For any Horn formula ', it takes O(
p
n(⌘ �

")�2 log(n
�
)) many samples, where n denotes the model count of ', and ", ⌘ and � are

the closeness, farness and confidence parameters respectively. Due to the extremely large

sample complexity, it is not feasible to compute the exact time for the baseline approach.

Thus, we have estimated the average time taken for any benchmark instance.
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In Table 5.3, we compare our Uniform-Horn-sampler-tester Flash with respect to the

sampler UniGen to the baseline over the 11 benchmark instances. 1st column of Table 5.3

represents the name of the benchmark instance and 2nd column corresponds to the model

count of the Horn formula corresponding to that instance. In 3rd and 4th columns, we

present the number of samples and time required by the baseline tester, whereas 5th, 6th

and 7th columns represent the number of samples and the time required by Flash , and

the output of Flash with respect to that particular benchmark instance. We find that

Flash outputs ACCEPT in all 11 benchmark instances. As it is evident from the entries of

the table, Flash vastly outperforms the baseline approach, both in terms of the number of

samples required, as well as the time required for testing.

Similarly, in Table 5.4, we compare our Uniform-Horn-sampler-tester Flash when run

with the sampler QuickSampler along with the baseline tester over the 11 benchmark

instances. Similar to Table 5.3, 1st and 2nd columns represent the benchmark instance

name and the model count, whereas 3rd and 4th columns correspond to the number of

samples and time required by the baseline tester, and 5th, 6th and 7th columns represent

the number of samples and total time required by Flash , and the output of Flash on that

instance. It turns out that Flash outputs REJECT in all the instances with respect to

QuickSampler. As in the case of UniGen, the number of samples required, and the

total time taken by Flash is much smaller compared to the baseline approach.

Finally, in Table 5.5, we present our results when we run our Uniform-Horn-sampler-

tester Flash for the sampler STS. The organization of this table follows in similar fashion

as Table 5.3 and Table 5.4. As in the case of QuickSampler, Flash outputs REJECT

in all 11 instances here as well. Similar to the case of UniGen and QuickSampler, it

is clear that Flash outperforms the baseline approach by several orders of magnitude both

in the context of number of samples required, as well as the time taken to complete the

experiment.
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Baseline Flash

Benchmark Model Count #Samples Time (s) #Samples Time (s) o/p

Net6 count 91 2.19⇥ 1032 7.72⇥ 1018 3.41⇥ 1017 218505 643 A
Net8 count 96 3.2⇥ 1036 9.9⇥ 1019 4.7⇥ 1018 218505 664 A
Net12 count 106 6.34⇥ 1043 5.27⇥ 1023 3.15⇥ 1022 218505 709 A
Net22 count 116 9.49⇥ 1050 2.36⇥ 1027 1.73⇥ 1026 218505 756 A
Net27 count 118 8.05⇥ 1053 7.27⇥ 1028 5.46⇥ 1027 218505 537 A
Net29 count 164 4.51⇥ 1063 6.41⇥ 1033 1.02⇥ 1033 218505 671 A
Net39 count 240 2.46⇥ 1091 6.77⇥ 1047 2.61⇥ 1047 218505 1002 A
Net43 count 243 8.41⇥ 10100 4.36⇥ 1052 1.75⇥ 1052 218505 1045 A
Net46 count 322 3.22⇥ 10129 1.09⇥ 1067 1.12⇥ 1067 218505 1491 A
Net52 count 362 2.64⇥ 10147 1.12⇥ 1076 1.24⇥ 1076 218505 1793 A
Net53 count 339 4.05⇥ 10143 1.36⇥ 1074 1.17⇥ 1074 218505 1622 A

Table 5.3: Evaluation results of Flash with UniGen

Baseline Flash

Benchmark Model Count #Samples Time (s) #Samples Time (s) o/p

Net6 count 91 2.19⇥ 1032 7.72⇥ 1018 1.79⇥ 1016 52025 54 R
Net8 count 96 3.2⇥ 1036 9.91⇥ 1019 2.16⇥ 1017 166480 182 R
Net12 count 106 6.34⇥ 1043 5.27⇥ 1023 1.19⇥ 1021 72835 88 R
Net22 count 116 9.49⇥ 1050 2.36⇥ 1027 6.06⇥ 1024 72835 94 R
Net27 count 118 8.05⇥ 1053 7.27⇥ 1028 1.86⇥ 1026 72835 97 R
Net29 count 164 4.51⇥ 1063 6.41⇥ 103 2.08⇥ 1031 114455 210 R
Net39 count 240 2.46⇥ 1091 6.76⇥ 1047 3.23⇥ 1045 166480 477 R
Net43 count 243 8.41⇥ 10100 4.36⇥ 1052 2.04⇥ 1050 93645 278 R
Net46 count 322 3.22⇥ 10129 1.09⇥ 1067 6.68⇥ 1064 10405 44 R
Net52 count 362 2.64⇥ 10147 1.12⇥ 1076 7.7⇥ 1073 10405 56 R
Net53 count 339 4.05⇥ 10143 1.36⇥ 1074 8.74⇥ 1071 31215 145 R

Table 5.4: Evaluation results of Flash with QuickSampler

5.5.2 Results of our Weighted-Horn-sampler-tester wFlash

In this section, we present the extended results of the experiments of our Weighted-Horn-

sampler-tester wFlash to test the samplers wUniGen, wQuickSampler and wSTS. For

each of the 11 benchmark instances of unweighted Horn formulas, we designed two sets of

weight functions and thus, we procured two sets of benchmarks, and we run our experiments

over these 22 benchmark instances.

For baseline, we employed the tester of Batu et.al [4]. For any Horn formula ', the
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Baseline Flash

Benchmark Model Count #Samples Time (s) #Samples Time (s) o/p

Net6 count 91 2.19⇥ 1032 7.72⇥ 1018 1.68⇥ 1016 20810 16 R
Net8 count 96 3.2⇥ 1036 9.91⇥ 1019 2.45⇥ 1017 31215 26 R
Net12 count 106 6.34⇥ 1043 5.27⇥ 1023 1.7⇥ 1021 52025 51 R
Net22 count 116 9.49⇥ 1050 2.36⇥ 1027 9.17⇥ 1024 41620 43 R
Net27 count 118 8.05⇥ 1053 7.27⇥ 1028 3.12⇥ 1026 10405 12 R
Net29 count 164 4.51⇥ 1063 6.41⇥ 1033 4.05⇥ 1031 20810 30 R
Net39 count 240 2.46⇥ 1091 6.76⇥ 1047 8.94⇥ 1045 114455 310 R
Net43 count 243 8.41⇥ 10100 4.36⇥ 1052 6.49⇥ 1050 114455 273 R
Net46 count 322 3.22⇥ 10129 1.09⇥ 1067 2.65⇥ 1065 10405 35 R
Net52 count 362 2.64⇥ 10147 1.12⇥ 1076 3.33⇥ 1074 20810 97 R
Net53 count 339 4.05⇥ 10143 1.36⇥ 1074 3.68⇥ 1072 72835 267 R

Table 5.5: Evaluation results of Flash with STS

tester of [4] takes O(n
2
3 (⌘�")�

8
3 log(n

�
)) many samples, where n denotes the model count of

', and ", ⌘ and � are the closeness, farness and confidence parameters respectively. Similar

to the case of Flash , as the sample complexity of [4] is very large, we have estimated the

average time taken for any benchmark instance by the baseline tester.

In Table 5.6, we present the results of our Weighted-Horn-sampler-tester wFlash to

test the sampler wUniGen. 1st column of Table 5.6 denotes the name of the benchmark

instance, 2nd column corresponds to the model count of the Horn formula corresponding to

the benchmark instance, and 3rd column represents the tilt of the formula corresponding

to the instance, where tilt denotes the maximum ratio between the weights of any two

satisfying assignments. 4th and 5th columns represent the number of samples and time

required by the baseline tester respectively. 6th, 7th and 8th columns corresponds to the

number of samples and time required by wFlash and its output on that benchmark instance

respectively. Among the 22 benchmark instances, in 8 instances, wFlash outputs ACCEPT

, whereas there are 6 instances of TLE and 8 instances of DNS. For the instances where

wFlash does not output TLE or DNS, it is clear that wFlash outperforms the baseline tester

by a large order of magnitude.

In Table 5.7, we present our results of wFlash with respect to wQuickSampler. The
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Baseline wUniGen
Benchmark Model Count tilt #Samples Time (s) #Samples Time (s) o/p

Net6 count 91 w1 2.19⇥ 1032 20.40 3.12⇥ 1024 TLE - TLE TLE
Net8 count 96 w1 3.2⇥ 1036 26.23 9.18⇥ 1025 TLE - TLE TLE

Net12 count 106 w1 6.34⇥ 1043 20.40 8.03⇥ 1030 TLE - TLE TLE
Net22 count 116 w1 9.49⇥ 1050 26.23 5.65⇥ 1035 TLE - DNS DNS
Net27 count 118 w1 8.05⇥ 1053 43.36 5.35⇥ 1037 TLE - DNS DNS
Net29 count 164 w1 4.51⇥ 1063 92.17 1.98⇥ 1044 TLE - DNS DNS
Net39 count 240 w1 2.46⇥ 1091 14043.96 8.81⇥ 1062 TLE - DNS DNS
Net43 count 243 w1 8.41⇥ 10100 1137.74 2.20⇥ 1069 TLE - DNS DNS
Net46 count 322 w1 3.22⇥ 10129 23215.53 3.81⇥ 1088 TLE - DNS DNS
Net52 count 362 w1 2.64⇥ 10147 286565.21 3.19⇥ 10100 TLE - DNS DNS
Net53 count 339 w1 4.05⇥ 10143 38376.70 8.92⇥ 1097 TLE - DNS DNS
Net6 count 91 w2 2.19⇥ 1032 12.34 3.12⇥ 1024 4.57⇥ 1023 274175 3921 A
Net8 count 96 w2 3.2⇥ 1036 5.80 9.18⇥ 1025 1.35⇥ 1025 397169 5837 A

Net12 count 106 w2 6.34⇥ 1043 5.80 8.03⇥ 1030 1.42⇥ 1030 197713 3022 A
Net22 count 116 w2 9.49⇥ 1050 7.46 5.65⇥ 1035 1.04⇥ 1035 302546 4551 A
Net27 count 118 w2 8.05⇥ 1053 7.46 5.35⇥ 1037 TLE - TLE TLE
Net29 count 164 w2 4.51⇥ 1063 7.46 1.98⇥ 1044 6.36⇥ 1043 238673 3986 A
Net39 count 240 w2 2.46⇥ 1091 9.60 8.81⇥ 1062 5.83⇥ 1062 282138 5909 A
Net43 count 243 w2 8.41⇥ 10100 4.51 2.20⇥ 1069 TLE - TLE TLE
Net46 count 322 w2 3.22⇥ 10129 5.80 3.21⇥ 1088 3.81⇥ 1088 437529 5038 A
Net52 count 362 w2 2.64⇥ 10147 2.73 3.19⇥ 10100 TLE - TLE TLE
Net53 count 339 w2 4.05⇥ 10143 7.46 8.92⇥ 1097 1.12⇥ 1098 191806 2933 A

Table 5.6: Evaluation results of wFlash with wUniGen

organization of this table is similar to that of Table 5.6. Our Weighted-Horn-sampler-tester

wFlash outputs REJECT in 21 instances out of the 22 instances, and outputs ACCEPT in

1 benchmark instance. Moreover, as in the case of wUniGen, the sample complexity and

total time taken by wFlash is much better compared to the baseline approach.

Finally, in Table 5.8, we show the results of wFlash in order to test the sampler STS.

The organization of the table follows in similar line to the preceding tables. It turns out

that wFlash outputs REJECT in all of the 22 benchmark instances here. Also, similar

to wUniGen and wQuickSampler, wFlash outperforms the baseline tester by a large

magnitude.
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Baseline wQuickSampler
Benchmark Model Count tilt #Samples Time (s) #Samples Time (s) o/p

Net6 count 91 w1 2.19⇥ 1032 20.40 3.11⇥ 1024 1.33⇥ 1022 106910 158 R
Net8 count 96 w1 3.2⇥ 1036 26.23 9.18⇥ 1025 3.94⇥ 1023 22716 37 R

Net12 count 106 w1 6.34⇥ 1043 20.40 8.03⇥ 1030 3.22⇥ 1028 27428 48 R
Net22 count 116 w1 9.49⇥ 1050 26.23 5.66⇥ 1035 2.73⇥ 1033 98629 182 R
Net27 count 118 w1 8.05⇥ 1053 43.36 5.35⇥ 1037 2.54⇥ 1035 49654 94 R
Net29 count 164 w1 4.51⇥ 1063 92.17 1.98⇥ 1044 1.53⇥ 1042 123202 337 R
Net39 count 240 w1 2.46⇥ 1091 14043.96 8.81⇥ 1062 1.04⇥ 1061 7745 54 R
Net43 count 243 w1 8.41⇥ 10100 1137.74 2.20⇥ 1069 2.37⇥ 1067 209062 934 R
Net46 count 322 w1 3.22⇥ 10129 23215.53 3.21⇥ 1088 3.89⇥ 1086 23105 174 R
Net52 count 362 w1 2.64⇥ 10147 286565.21 3.19⇥ 10100 4.65⇥ 1098 6085 99 R
Net53 count 339 w1 4.05⇥ 10143 38376.70 8.92⇥ 1097 1.13⇥ 1096 38417 331 R
Net6 count 91 w2 2.19⇥ 1032 12.34 3.12⇥ 1024 9.1⇥ 1021 17667 23 R
Net8 count 96 w2 3.2⇥ 1036 5.80 9.18⇥ 1025 2.83⇥ 1023 388885 486 A

Net12 count 106 w2 6.34⇥ 1043 5.80 8.02⇥ 1030 2.98⇥ 1028 6085 10 R
Net22 count 116 w2 9.49⇥ 1050 7.46 5.66⇥ 1035 2.08⇥ 1033 22947 36 R
Net27 count 118 w2 8.05⇥ 1053 7.46 5.35⇥ 1037 1.89⇥ 1035 10405 16 R
Net29 count 164 w2 4.51⇥ 1063 7.46 1.98⇥ 1044 8.94⇥ 1041 7226 17 R
Net39 count 240 w2 2.46⇥ 1091 9.60 8.81⇥ 1062 5.96⇥ 1060 13690 43 R
Net43 count 243 w2 8.41⇥ 10100 4.51 2.20⇥ 1069 1.45⇥ 1067 238260 765 R
Net46 count 322 w2 3.22⇥ 10129 5.80 3.21⇥ 1088 2.56⇥ 1086 135368 592 R
Net52 count 362 w2 2.64⇥ 10147 2.73 3.19⇥ 10100 2.98⇥ 1098 210925 1138 R
Net53 count 339 w2 4.05⇥ 10143 7.46 8.92⇥ 1097 7.23⇥ 1095 8650 43 R

Table 5.7: Evaluation results of wFlash with wQuickSampler
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Baseline wSTS
Benchmark Model Count tilt #Samples Time (s) #Samples Time (s) o/p

Net6 count 91 w1 2.19⇥ 1032 20.40 3.12⇥ 1024 2.15⇥ 1022 15626 26 R
Net8 count 96 w1 3.2⇥ 1036 26.23 9.18⇥ 1025 6.27⇥ 1023 39944 73 R

Net12 count 106 w1 6.34⇥ 1043 20.40 8.03⇥ 1030 5.92⇥ 1028 41334 82 R
Net22 count 116 w1 9.49⇥ 1050 26.23 5.66⇥ 1035 5.32⇥ 1033 9217 22 R
Net27 count 118 w1 8.05⇥ 1053 43.36 5.35⇥ 1037 5.2⇥ 1035 25296 64 R
Net29 count 164 w1 4.51⇥ 1063 92.17 1.98⇥ 1044 3.2⇥ 1042 12322 41 R
Net39 count 240 w1 2.46⇥ 1091 14043.96 8.81⇥ 1062 3.6⇥ 1061 7922 77 R
Net43 count 243 w1 8.41⇥ 10100 1137.74 2.2⇥ 1069 8.04⇥ 1067 22351 165 R
Net46 count 322 w1 3.22⇥ 10129 23215.53 3.21⇥ 1088 2.04⇥ 1087 7922 91 R
Net52 count 362 w1 2.64⇥ 10147 286565.21 3.19⇥ 10100 2.63⇥ 1099 8650 153 R
Net53 count 339 w1 4.05⇥ 10143 38376.70 8.92⇥ 1097 6.88⇥ 1096 23105 331 R
Net6 count 91 w2 2.19⇥ 1032 12.34 3.12⇥ 1024 1.36⇥ 1022 26995 30 R
Net8 count 96 w2 3.2⇥ 1036 5.80 9.18⇥ 1025 4.07⇥ 1023 16385 21 R

Net12 count 106 w2 6.34⇥ 1043 5.80 8.03⇥ 1030 4.7⇥ 1028 5930 8 R
Net22 count 116 w2 9.49⇥ 1050 7.46 5.66⇥ 1035 3.83⇥ 1033 24561 36 R
Net27 count 118 w2 8.05⇥ 1053 7.46 5.35⇥ 1037 3.91⇥ 1035 26245 37 R
Net29 count 164 w2 4.51⇥ 1063 7.46 1.98⇥ 1044 2.02⇥ 1042 17706 33 R
Net39 count 240 w2 2.46⇥ 1091 9.60 8.81⇥ 1062 1.62⇥ 1061 14885 35 R
Net43 count 243 w2 8.41⇥ 10100 4.51 2.2⇥ 1069 4.53⇥ 1067 9217 26 R
Net46 count 322 w2 3.22⇥ 10129 5.80 3.21⇥ 1088 1.04⇥ 1087 30819 98 R
Net52 count 362 w2 2.64⇥ 10147 2.73 3.19⇥ 10100 1.28⇥ 1099 23127 100 R
Net53 count 339 w2 4.05⇥ 10143 7.46 8.92⇥ 1097 3.04⇥ 1096 9605 38 R

Table 5.8: Evaluation results of wFlash with wSTS
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Chapter 6

Conclusion

We designed and implemented the first Horn-sampler-testers Flash and wFlash that have

sound theoretical guarantees. They also work well in practice, as described by the evalua-

tion results with respect to three state-of-the-art samplers UniGen, QuickSampler, and

STS, along with their weighted counterparts wUniGen, wQuickSampler, and wSTS.

To best of our knowledge Flash and wFlash are the first testing frameworks for checking

reliability of the Uniform-Horn-sampler and Weighted-Horn-samplerȦpart from Horn, the

other classes of CNF like 2-SAT, Dual-Horn and some non-CNF classes like XOR-CNF are

of keen interest in various fields. Thus coming up with testing frameworks exclusively for

such classes could give a new direction to this research.

66



Bibliography

[1] Dimitris Achlioptas, Zayd S Hammoudeh, and Panos Theodoropoulos. Fast sampling

of perfectly uniform satisfying assignments. In International Conference on Theory

and Applications of Satisfiability Testing, pages 135–147. Springer, 2018.

[2] Tugkan Batu, Sanjoy Dasgupta, Ravi Kumar, and Ronitt Rubinfeld. The complexity

of approximating the entropy. SIAM Journal on Computing, 35(1):132–150, 2005.

[3] Tugkan Batu, Eldar Fischer, Lance Fortnow, Ravi Kumar, Ronitt Rubinfeld, and

Patrick White. Testing random variables for independence and identity. In Proceedings

42nd IEEE Symposium on Foundations of Computer Science, pages 442–451. IEEE,

2001.

[4] Tugkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D Smith, and Patrick White.

Testing that distributions are close. In Proceedings 41st Annual Symposium on Foun-

dations of Computer Science, pages 259–269. IEEE, 2000.
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